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Abstract—With the growing complexity of high-performance
computing (HPC) systems, achieving high performance can be
difficult because of I/0 bottlenecks. We analyze multiple years’
worth of Darshan logs from the Argonne Leadership Computing
Facility’s Theta supercomputer in order to understand causes of
poor I/O throughput. We present Gauge: a data-driven diagnostic
tool for exploring the latent space of supercomputing job features,
understanding behaviors of clusters of jobs, and interpreting
I/O bottlenecks. We find groups of jobs that at first sight are
highly heterogeneous but share certain behaviors, and analyze
these groups instead of individual jobs, allowing us to reduce
the workload of domain experts and automate I/O performance
analysis. We conduct a case study where a system owner using
Gauge was able to arrive at several clusters that do not conform
to conventional I/0 behaviors, as well as find several potential
improvements, both on the application level and the system level.

Index Terms—HPC, 1/0, diagnostics, machine learning, clus-
tering

I. INTRODUCTION

Because of the scale and evolving complexity of high-
performance computing (HPC) systems, critical gaps still
remain in our understanding of HPC applications’ runtime
behaviors, specifically, compute, communication, and storage
behaviors. This situation is further complicated by the fact
that HPC applications come from a diverse set of scientific
domains, can have vastly different characteristics, and are exe-
cuted simultaneously, thereby contending for shared resources.

One such gap is the understanding of I/O utilization in
these systems. Currently, application programmers and sys-
tems administrators still heavily rely on limited observations,
anecdotes, and scattered experiences to develop design patterns
for applications and manage their runtime performance either
at the node level or at the system level. This approach is
tractable only to the extent permitted by limited application
developer and facility support staff resources and their exper-
tise. Therefore, automated data-driven methods are needed to
streamline this process and reduce the turnaround time from
capturing information to understanding and enacting improve-
ments in I/O utilization and efficiency. One intuitive way to
approach this situation is not by simply considering application
performance in isolation but by identifying commonalities
that reduce the volume of characterization data, simplify
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Fig. 1: Frequency of jobs with respect to I/O throughput and
the total number of bytes transferred. Data are collected from
the Argonne Leadership Computing Facility (ALCF) Theta
supercomputer. Note that the color bar is logarithmic.

performance modeling efforts, and exploit opportunities for
performance improvement across application domains.

Machine learning (ML) is a promising approach for the
data-driven analysis of I/O performance data. This is evidenced
by the growing interest in the design and development of
ML-based methods for various I/O performance analysis and
modeling tasks [[1]-[6]. However, analyzing I/O performance
is not trivial. Figure [I] shows that I/O throughput spans
almost 14 orders of magnitude and can vary as much as five
orders of magnitude for jobs with the same amount of I/O
volume. Given the complexity of the I/O performance data,
the relationship between the I/O performance and the factors
that affect it are often nonlinear. Consequently, there is a
trade-off between explainability and predictive accuracy when
out-of-the-box ML methods are adopted for I/O performance
analysis. In particular, the models that are explainable and
intuitive to I/O experts are often simple and based on linear
models. The models that have high predictive accuracy are
often black box and cannot be used directly for explaining the
I/O performance.

We develop an explainable ML platform for I/O perfor-
mance analysis to answer a number of I/O performance
questions: how can we cluster applications together? Given
an application or task execution, what existing I/O behavior
cluster does the job fall into? What are the key characteristics
of the cluster itself? Does it match the expected execution
or performance profile, for example, the requested resources



and the optimality of those resources’ utilization? How does
this job’s performance rank with the rest of the cluster? What
parameters influence the job placement within the cluster?
How does the cluster rank with other clusters?

The goal of this work is to answer these questions, and to this
end our contributions are as follows:

« We introduce a log-based feature engineering pipeline for
HPC applications. Our analysis uses 89,844 Darshan logs of
I/O volume greater than 100 MiB collected on the Argonne
Leadership Computing Facility (ALCF) Theta supercom-
puter from 2017 to 2020.

e« We show that agglomerative clustering can reveal a large
amount of structure in the dataset and that training models
on fine-grained (local) clusters instead of on the whole
dataset yields more robust and useful predictions.

o Using different ML methods, we demonstrate that despite
I/O throughput varying across many orders of magnitude,
we can on average predict individual job I/O throughput
within ~20% of the real value. Furthermore, we show how
the interpretation of ML prediction models can yield useful
advice for increasing application performance.

o To validate the practicality of the proposed feature engi-
neering pipeline and the clustering techniques, we introduce
Gauge, an exploratory I/O throughput analysis tool with
adjustable data granularity and interpretable I/O throughput
models. We illustrate how it can be used by system owners
and I/O experts to optimize the HPC clusters for the
workload present or by application developers to optimize
their jobs.

« We release a web-based version of Gauge, information about
the tool is available at http://ascslab.org/research/gaugel

II. EXPLORATION OF THE APPLICATION SPACE

A. Darshan Log Dataset Generation

Darshan [6]] is an HPC I/O characterization tool that
transparently captures I/O access pattern information about
applications running on a system. It collects information such
as numbers of POSIX operations, I/O access patterns within
files, and timestamps of events such as opening or closing files.
We have collected 661,553 Darshan logs from the ALCF’s
Theta supercomputer, ranging from January 2017 to March
2020. Since using Darshan is optional and as many legacy
applications do not support it, our dataset covers only 28% of
all jobs run on Theta.

For each job, Darshan can be used with a number of instru-
mentation modules, such as POSIX, MPI-IO, stdio, HDF5, and
Lustre. In this work, since we focus on I/O characterization,
two modules are of interest: POSIX and MPI-IO. We choose
to use only POSIX for two reasons: (1) since the MPI-10 layer
passes through the POSIX layer, POSIX operation counters are
strictly equal to or larger than that of MPI-IO and (2) MPI-
IO requires POSIX to be enabled, but only 28.2% of the jobs
instrumented with POSIX are also instrumented with MPI-IO.

The POSIX module measures 86 features, such as number
of bytes read and written; number of accesses per each of

the 10 bins; number of consecutive and sequential read and
write operations; file and memory aligned operations; sizes
and strides of the top four most common POSIX access
sizes; number of common POSIX calls such as seek (),
stat (), and fsync(); cumulative time spent reading,
writing, and in other operations such as seek (), stat (),
and fsync (); and timestamps of the first and last POSIX
open/read/write/close operations. More information can be
found in the Darshan-util documentation [7]. On top of this
set, we appended 10 Darshan metaparameters including the
job’s I/O throughput; number of unique or shared files opened;
and number of read-only, read/write, and write-only files. Logs
containing all of these features serve as the raw dataset, which
we process with a data sanitization and normalization pipeline
described below.

B. Sanitization and Normalization Pipeline
Our data preprocessing pipeline consists of several steps:

1) Data sanitization: In this step, we remove jobs that are
not instrumented with POSIX or have invalid values (e.g.,
negative values). Negative values are typically present
when a job was not closed properly or when a hardware
fault occurred. Similarly, we remove features that have a
large number of missing values. These typically arise since
the version of Darshan running on Theta has changed over
the years and new features were introduced. Hence, we
choose to ignore these new features.

2) Feature pruning: We remove common access size features
and all time-sensitive features. Common access size fea-
tures store the most common access sizes in bytes. Because
of the difficulty in converting these values to a more
ML-digestible format, we choose to remove them. Time-
sensitive features measure timestamps such as when files
are first opened or closed last. The rationale for removing
them is that Darshan uses some of these features in calcu-
lating job throughput. By leaving them in, we risk that an
ML model might pick up Darshan’s implementation details,
instead of the wanted insight. In Section [III-B} we provide
evidence that models trained on datasets that have only
five features (four time-based features and I/O volume)
significantly outperform models trained on datasets with
all non-time-based features (Table [I). Note that other than
time-sensitive features, all other features are a function of
the application and input parameters; that is, these values
are largely independent of the actual system the application
is running on.

3) Data normalization: We apply feature engineering to force
the values to a more manageable range. Quick investigation
shows that the majority of features in our dataset have
values in a wide range; for example, the total number of
bytes a job has transferred can vary from tens of bytes
to multiple petabytes—almost 15 orders of magnitude.
This distribution is consistent across features; and without
treating it in a special way, it is hard to use ML methods
on such wide ranges of values. To tackle this problem, we
convert the majority of the features from absolute values
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to values relative to some other features. We can do so
because many of the features represent quantities that are
portions of other quantities. For example, Darshan records
both the number of read operations and the number of
consecutive and sequential reads. Therefore, since the last
two features are at most equal to the number of reads, we
can convert them to a percentage of total reads. Arguably,
this approach cannot be universally applied; for example,
the number of POSIX seek operations cannot be expressed
as a ratio of a different feature. To tackle this situation, we
replace the values of feature f with log1o(f). We use logio
instead of [n since it is simpler to interpret and translate
back to the original value. Since all of the features in the
dataset are positive or zero, we increment the feature by a
small constant (e.g., 1075) so that the logarithm is always
defined. Doing so forces the values into a more controllable
range: a majority of the values lie in (-5, 12).

We are left with 45 percentage features and 12 logarithmic
features, not counting I/O throughput (also logarithmic). In
Table [I| we give a brief overview of several sets of features,
and we refer the reader to our open-source repository with the
experiments for this work [8]. We also prune the set of jobs.
From the 661,553 collected jobs, we first discarded 163 jobs
that contained corrupted instrumentation data, 284,464 jobs
(43.0%) for which Darshan did not instrument POSIX calls,
and 287,082 jobs (43.3%) that have less than 100 MiB of total
I/O volume, leaving us with 89,844 (13.6%) jobs. Since these
small jobs occupy a fraction of the total traffic [9]] (small jobs
transferred 974 GiB in total, while large jobs transferred 58.9
PiB), in this work we focus on analyzing large jobs. In future
work, we plan to investigate both large and smaller jobs, as
well as the impact of many smaller jobs on the system.

Note that because we do not have full visibility into the sys-
tem, we are unable to reconstruct the system’s I/O utilization
at a given timestamp. Therefore, our analysis is geared more
toward explaining internal reasons for a job’s I/O throughput
(e.g., by detecting good or bad I/O patterns), and less on
external reasons (e.g., I/O contention).

C. Exploring Dataset Structure

Once we have preprocessed the dataset, it is ready for
analysis. Since every job in the dataset can be represented
as a point in a 57-dimensional space and since we have
only ~90,000 jobs, the majority of this space is unoccupied.
Furthermore, since these jobs are derived from a small number
of applications (the top 6 applications account for 50% of
all jobs), we expect that the majority of the dataset exists
in clusters. Since we expect the jobs to sparsely occupy
this high-dimensional space, we are interested in exploring
what underlying structure the dataset has and whether we can
exploit any statistical properties to reduce the dimensionality
of the data.

To better understand structure in the dataset, we need a
metric to compare individual jobs. Selecting one is nontrivial
because the features are heterogeneous (percentage ones are
relative and logarithmic ones are absolute). In Figure 2] we

TABLE I: Condensed Feature Set

Feature set | Count
Logarithmic features
log1o of the total number of {files, accesses, bytes} 3
logio of the number of POSIX {open, seek, stat, mmap, 6
fsync, mode} calls
log1o of the number of processes 1
logio of {memory, file} alignment in bytes 2
Ratio features
% of all accesses that are {reads, writes} 2
% of all {reads, writes} that are {consecutive, sequential } 4
% of all accesses that switch between reading and writing 1
% of {read, write} accesses of size in ranges [0B, 100B], [100B, 20
1KiB], [IKiB, 10KiB], [10KiB, 100KiB], [100KiB, 4MiB],
[4MiB, 10MiB], [10MiB, 100MiB], [100MiB, 1GiB], 1GiB+
% of accesses in the {1, 2,3, 4}—th most common access size 4
% of non-aligned {file, memory} accesses 2
% of all bytes that are {read, written} 2
% of {shared, unique, read-only, read-write, write—only} files 5
% of bytes read/written from {shared, unique, read-only, read- 5
write, write-only} files
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Fig. 2: Manhattan (left) and Euclidean (right) distance matrices
of 96 jobs chosen at random from 6 I/O-intensive applications,
with 16 jobs per application. Each row and column represent
a job belonging to an application denoted by the left or top
border color.

show the Manhattan (LL1) and Euclidean (L.2) distances when
comparing 96 jobs from the top six applications. Both metrics
result in similar distance matrices, albeit at different scales.
Here we used single linkage clustering—a type of hierarchical
clustering—to group similar jobs together. This can be seen
by the application colors on the left and top of the distance
matrix. While we have started with jobs sorted by application,
the clustering has rearranged rows and columns to form the
clusters, namely, the series of dark boxes on the main diagonal.
Note that the quality of clusters varies—not all are equally
dark, and some clusters consist of jobs only vaguely similar.
We note that often jobs from the same application can be very
different; that is, multiple clusters exist within applications.
Furthermore, jobs from different applications can often be
more similar than jobs within the same application, as can be
seen with the cosmology and fluid dynamics applications. Note
that without the feature normalization described previously
(though not pictured in Figure 2)), the differences between jobs
are far more pronounced, even within the same application.
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Fig. 3: HDBSCAN single linkage tree, pruned of clusters smaller than 1,000 jobs and of clusters clustered at ¢ < 3. Note the
four clusters marked Alpha to Delta. These clusters are hand-selected using this tree and are used later in the analysis.

The existence of these clusters and of clusters of varying
densities motivated us to further explore the structure of
the dataset. For that purpose, we used HDBSCAN [10], a
hierarchical version of the DBSCAN agglomerative clustering
algorithm. Brieflyy, DBSCAN works by clustering together
points within a certain distance € and connecting graphs of
these neighboring points into larger clusters. DBSCAN is
highly sensitive to the choice of this distance parameter e,
with small values leading to many small “islands” of jobs
and large values leading to the whole dataset being placed
in a single cluster. HDBSCAN allows us to visualize what
the original DBSCAN algorithm would arrive at clustering at
any e value. HDBSCAN is sensitive to a second parameter k,
which controls the minimal size of clusters. As we decrease e,
clusters will periodically split; and when these smaller “child”
clusters contain less than & points, their contents will be treated
as outliers. In our experiments, we use the default value of
k = 5. A small k value allows us to explore clusters with
fine granularity. In Figure 3] we show HDBSCAN’s single
linkage tree, with both color and position of nodes on the y
axis specifying the e value at which the cluster merges and
splits. We can see that the whole dataset gets clustered in
a single cluster for large ¢ values and that, as we decrease
the value, the cluster gets progressively split into smaller and
smaller clusters. The lines connecting the clusters specify
which clusters get split into or merge into which, with the
line thickness being proportional to the number of jobs going

to that cluster. The values in clusters specify the number of
jobs in that cluster. The number of jobs between parent and
children clusters may not always add up; some jobs are lost
as they belong to smaller clusters that we do not plot, in order
to avoid visual clutter.

Note that we have four clusters with larger circles marked
Alpha, Beta, Gamma, and Delta. We have selected these
clusters for further analysis in Section These specific
clusters were selected because they are far from each other
in the tree and hence may have very different behaviors.
Additionally, we wanted to explore the impact of granularity
in our analysis. That is why we have selected the cluster Delta
(bottom right) to be a sub-cluster of cluster Gamma (right).
Gamma contains all of the jobs in Delta, plus 5,000 other jobs.

D. Interpreting Dataset Structure

While Figure [3] reveals the existence of a rich structure in
the dataset, it does not increase our understanding of it. To get
better intuition about the data distribution, we perform a simple
experiment: since every node of the HDBSCAN single linkage
tree consists of a number of smaller merged clusters, we train
a decision tree that predicts where each job in the cluster will
end up once the cluster splits. To help interpretability, we train
decision trees only of depth 1, namely, trees with only 2 leaves
and a single decision splitting the dataset. The annotations and
arrows pointing to nodes in Figure 3] explain what the decision
trees at those nodes have learned.

Right away, the clustering splits the dataset into jobs that



use only read/write files and jobs that also use read-only and
write-only files (top cluster’s annotation). Although this split
is imbalanced (70K jobs vs. 10K jobs), the accuracy of the
decision tree (98%) is high enough to still be informative.
Looking at its smaller child (node with 10,775 jobs), we
see that it splits the dataset with perfect accuracy into jobs
that have more or less than 25% of unique files (unique files
are files accessed only by a single process). Note that other
nodes’ decisions might not be so accurate. This is due to our
choice of using a decision tree with a depth of 1. If we allow
deeper decision trees, the accuracy of decisions increases, but
interpreting these models becomes more tedious. In practice,
we use the HDBSCAN tree in a more interactive process,
allowing us to test different decision trees using different
features, depths, and acceptable accuracies.

Through analyzing this tree in more depth, we concluded
that the clusters in the dataset occupy very distant spaces,
showing different behaviors across several and often tens of
different features. As we decrease ¢, the clusters get smaller,
and the jobs within them more and more similar, until we
arrive at just dozens of almost identical runs. We claim that to
analyze throughput and extract insight out of a cluster, first we
must select the right granularity at which to make the analysis.
Too fine, and we may be learning the behavior of a single job,
not any general trends shared by different applications running
on the HPC system. Too coarse, and we may arrive at very
general interpretations that are not specific to the jobs we are
interested in.

III. I/0 BEHAVIOR CHARACTERIZATION

Before we can explore why I/O throughput behaves a certain
way, we first seek to predict it. Once we have a machine
learning (ML) model that does a good job of predicting /O,
we can use the trained model to extract insight.

A. Evaluating I/O Throughput Predictions

To predict I/O performance, we first need to define a metric
for evaluating predictive accuracy. Common metrics such as
L1 or L2 loss might not be a good fit for our data because
the throughput ranges from KiB/s to TiB/s and hence
will penalize jobs with higher throughput more than the low-
and medium-range ones, forcing our models to ignore the
latter. Therefore, we adopt root mean squared logarithmic
error (RMSLE) and mean absolute logarithmic error (MALE)
functions:

1 Z(logw(yi) — logio(9i))*

\ iz
1 n y
= n ;loglo (gi)

RMSLE(y,y) =
(D

N X
MALE(y,§) = n Z |log10(yi) — logio(¥i)]
i=0

1< Yi
— Z lOglO T .
iz Yi

2)

Both of these equations penalize the ratio of the prediction
vs. the real value. Hence the ML model is scale independent
and should equally penalize relative prediction errors on both
small and large throughput jobs. Since our ML models already
receive percentage and logarithmic features and are tasked
with predicting the logarithmic I/O throughput value, they can
natively use MSLE/MALE; that is, we never have to convert
the predictions back to the raw values. In subsequent text,
we choose to use MALE over RMSLE, since MALE is less
sensitive to outliers and is more directly interpretable. Using
MALE allows us to directly translate median errors to English,
for example, by saying that the model on average predicts I/O
throughput with 1.15x error. For example, if a model predicts
a throughput of 13GiB/s for a job that in reality achieves only
10GiB/s, the MALE error is M ALE(10 x 10°,13 x 10°) =
| — 0.114|. To interpret this loss, we calculate the relative
error 10791141 = 1.3x. The same value is calculated if we
swap the prediction and target value; that is, this model may
underestimate or overestimate throughput. In either case, we
have a good estimate of the range of the target value.

B. Modeling I/O Performance

We now attempt to create accurate I/O throughput prediction
models. The goal of modeling I/O performance, instead of sim-
ply observing it, is to potentially develop accurate models and
analyze them for underlying causes of over-/underperforming
I/O throughput. If the model has good predictive power
and generalizes well (can accurately predict I/O throughput
of new jobs), we can apply ML model interpretation and
explanation methods to answer questions such as what pa-
rameters influence this job’s I/O throughput the most and
what steps we should take to improve performance. We have
evaluated a number of different types of ML models, such
as linear regression, decision trees, random forests, gradient
boosting machines, and neural networks, and have chosen to
use XGBoost [11] for our predictions. XGBoost is a gradient
boosting machine library that shows excellent performance
on tabular data and is simpler to tune compared with other
powerful models such as neural networks.

In Figure ] we present training and test errors of an
XGBoost model trained on the whole training set (box plots
on the right marked “Global”), as well as a number of
XGBoost models trained on clusters of various granularities
(discussed later). The global model achieves a median error
of less than 1.2x; that is, half of the predictions are less
than 1.2x off the true value. Through discussion with HPC
domain experts and system owners, we learned that this sort of
misprediction is acceptable, since I/O throughput can vary by
orders of magnitude. Furthermore, pushing this error lower
may be difficult because of external, unobservable factors
such as I/O weather [12]. Since our analysis here does not
take into account the system’s I/O contention present during
the job’s execution, we fundamentally cannot achieve better
predictions than I/O weather would allow. For brevity, we
leave the analysis and discussion of I/O weather’s impacts
on our models to future work.
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Fig. 4: I/O throughput prediction results. Top row shows the
training and test error distribution of XGBoost models trained
on clusters of various granularities. The rightmost model is a
single model trained on the whole dataset. The bottom row
shows the cumulative histogram of the above error.

Given that the global model is performing well, we seek to
gain insight into how the model is arriving at its predictions.
To do so, we use the permutation feature importance (PFI),
a statistical method [13] that evaluates the impact of every
feature on the trained model output. The method works by
taking the trained model, selecting a feature whose importance
we want to test, and permuting its values from different
rows. This approach guarantees that the input distribution
of that feature remains the same but carries no information.
It permutes values instead of, for example, zeroing out that
feature, since this may additionally hurt the model’s predictive
performance. In Figure 5} we show the top features selected
by PFI using XGBoost predictors, on two different datasets
(blue and orange). The first PFI experiment (orange line
and labels) shows feature importance of models trained on
a dataset consisting of all jobs larger than 100 MiB and with
features from Table [l The second PFI experiment (blue line
and labels) uses the same jobs but now has ten additional time-
based features: runtime; cumulative read, meta, and write time
relative to runtime; maximum read / write operation durations
relative to runtime; and time periods between first and last
open, close, read, and write operations relative to runtime.
The figure can be interpreted as follows: For each row, the
classifier is trained on that row’s selected feature, in addition
to the features from the rows above. For example, the third
row’s orange XGBoost predictor is trained on the total number
of bytes, read / write accesses, and percentage of reads in the
[1, 10] KiB range.

First, let us look at PFI values on the original (orange)
dataset, which does not contain time-based features. We briefly

analyze why these features may have been selected. We note
that important features do not necessarily imply that increasing
those feature values is beneficial for performance; in other
words, strong negative correlations will also be treated as
important. The total number of bytes transferred is selected
as the most important feature. The reason is that I/O-heavy
applications typically have higher throughput than smaller
applications have (Figure [I), so just from volume the model
can narrow down throughput to two orders of magnitude.
Throughput can scale with volume for a variety of reasons,
for example, because larger applications being able to amortize
some of the slower operations or because more effort may be
spent on optimizing more intensive applications. The number
of read and write calls likely helps the model estimate the
average transfer size, another rough predictor of throughput.
Similarly, small accesses in the 1-10 KiB range are likely
correlated with low throughput. The number of files can be
important, especially for applications that open one file per
process (in Section [V| we analyze a cluster of such jobs).
Consecutive and sequential reads and writes are preferable to
random access operations. Other features are less intuitive,
such as the number of stat () calls or why PFI selected
the percentage of the third most common access size vs. all
accesses. One of the reasons some of the later features may
be less intuitive is that XGBoost’s performance is relatively
constant once the top 6 or 7 features are provided. If adding
less important features only slightly improves model predic-
tions, PFI has a high chance of incorrectly ordering features.
Therefore, we should not invest too much time analyzing
features that are not in the top of Figure [3]

Looking at PFI results on the dataset that has additional
time-based features, we see that just with the top four or five
features the model can outperform any model trained on the
dataset without time-based features. The reason is likely due
to the model learning the details of Darshan’s I/O throughput
calculation implementation. The model therefore relies heavily
on time-based features and does not utilize the rest of the
dataset. This reliance prevents us from using model explana-
tion techniques on it, since in our experiments the techniques
only reinforce that time-based features are important. Hence,
in order to force the model to learn relationships between
the I/O patterns and throughput, we remove the time-based
features.

While the feature importance obtained here matches the
insights from domain experts, it does not significantly change
how we would analyze misbehaving jobs or systems. In other
words, if we were to extract from the model advice such
as “higher I/O volume is typically correlated with higher
throughput,” “consecutive reads and writes are faster than non-
consecutive,” or “unique files are preferable to shared ﬁles,’ﬂ
this advice does not help with diagnosis. We therefore focus on
developing more personalized, “local” advice that is applicable
only to a specific family or cluster of jobs. By trying to detect

!In Darshan, unique files are files that are accessed only by a single process.
If two or more processes access the same file, that file is considered shared.



motifs in parallel execution, we hope to arrive at a greater
understanding of a smaller subset of jobs, instead of general
understanding of all the jobs.

Feature Importance in Descending Order
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Fig. 5: Permutation feature importance (PFI) [[13]] of XGBoost
models on two datasets. The blue line and labels represent PFI
on a dataset with time-based features, and the orange line and
labels represent PFI on a dataset without time-based features.

IV. I/O MODEL INTERPRETATION

In this section, we focus on developing local models of I/O
throughput and interpreting them. By local, we mean cluster-
specific models, instead of the whole dataset. As seen in
Figure 4] by using different ¢ values in DBSCAN clustering,
we have selected several clustering granularities that result in
splitting the whole dataset into different numbers of clusters.
At each granularity, we split each cluster into a training and a
test set, with a 70 — —30 ratio. We train one XGBoost model
per cluster and predict I/O throughput on the cluster’s test
set. In Figure 4] we present a box plot of the concatenated
errors of all clusters. As we can see, with higher granularity
we achieve better I/O predictions. Note that since we are
evaluating the models on a different set of data from what the
model was trained on, we are confident that the model is not
simply memorizing job-throughput pairs but has generalized
well enough. However, notice that in Figure ] the global model
and models trained on coarse-grained clusters (red and green
bars) achieve similar performance on both the training and test
sets. On the other hand, when the dataset is split into hundreds
of clusters (orange and blue bars), where each of the per-
cluster models is trained on a small portion of the total data,
the models that have excellent performance on the training
set have a considerably worse performance on the test set.
This is evidence of overfitting, pointing to the conclusion that

for smaller clusters we should use simpler models or stronger
regularization. Even with possible overfitting, however, on the
test set these small-cluster models achieve considerably better
accuracies compared with the global model. Therefore we
seek to interpret these local models. For the interpretations,
we use SHapley Additive exPlanations (SHAP) [14]], [15]], a
game theoretic approach to interpreting black-box ML models.
SHAP allows us to gain insight into the impact of each feature
on a per-job level, providing us with information not only
about which features are important but also about how they
affect the prediction and how they react to other features.

To apply SHAP on these local models, we design an
interactive HPC job analysis tool we call Gauge. It allows
system administrators and I/O experts to select clusters from
the HDBSCAN tree from Figure [3 and plot each cluster’s
information on a dashboard. In Figure [6] we present a screen-
shot of Gauge’s dashboard, showing information about four
clusters, with one cluster per column. Gauge succinctly shows
the general information about each cluster in the first two
rows. Note that the same clusters that were highlighted in
Figure [3] are plotted here. We have selected these clusters
to better illustrate behavior of dissimilar jobs and clusters at
different granularities (note the large difference in € between
the clusters, as shown in Figure [3).

A. Gauge Dashboard

The first row shows parallel plots of logarithmic features
deemed most important by I/O experts. These plots allow the
user to quickly gain insight into the cluster’s I/O throughput
volume, numbers of files, processes, and their relationships.
Note the different units: we display throughput in MiB / s,
volume in GiB, and the number of accesses in thousands, while
numbers of processes and files are not modified. We selected
MiB / s, GiB, and accesses in thousands so that the values can
be plotted on the same logarithmic scale.

The second row shows another parallel plot, this time for
ratio features. Note that jobs within the same cluster often have
similar percentage features but differ in logarithmic ones. The
reason is that jobs from, say, the same application may exhibit
identical behavior but, because they were run with different
inputs, show different IO volumes, throughputs, runtimes, and
so forth.

The third row shows the error distribution of three ML
models for predicting I/O throughput. The first is simply a
median predictor—its prediction is a constant, selected as the
median I/O throughput for the whole cluster. While trivial,
this predictor is useful because it often outperforms other
predictors once the cluster is very fine-grained, and it can serve
as a baseline. The second classifier is a linear regression, and
the third one is XGBoost. The linear regression performs well
on medium-granularity clusters (with hundreds or thousands
of jobs), where typically only one application’s jobs exist in
the cluster and XGBoost may overfit. For anything larger,
XGBoost outperforms the constant and linear predictors, as
can be seen in the third row of Figure [§

The fourth row shows SHAP’s summary plot for the ML
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Fig. 6: The Gauge Dashboard. The first and second rows show parallel coordinate plots of the logarithmic and percentage
features for four different clusters. The third row shows the performance of three different ML models trained on each cluster.
The fourth row shows the SHAP summary plot for each of the clusters. The last three rows show scatter plots of features

selected by SHAP, with the color indicating the I/O throughput.

models. These graphs should be interpreted as follows, There
exist four rows per plot (though this is parameterizable), and
each row represents a feature. Red markers correspond to
jobs with higher values and blue markers to lower values of
that feature. The position of these markers indicates SHAP’s
predicted impact of the feature on the model’s prediction.
Markers on the right indicate that that job’s feature has a
positive impact on predicted I/O throughput, and markers on

the left indicate that the impact is negative. As an example,
the first column’s “Data volume row” has red markers (high
values) on the right, indicating that higher data volume results
in higher throughput for that cluster. Alternatively, the “% R
Ops 1-10 KiB” row in the fourth column has red markers on
the left. Thee mean that larger numbers of reads in the [1-10]
KiB range result in decreased I/O throughput. Note that the
scale allows us to compare the impact of different features on



I/O throughput. This is further analyzed in Section [V]

Rows five, six, and seven show scatter plots of different
features, colored with I/O throughput. The top feature accord-
ing to SHAP is used for the = axis on all three scatter plots,
while for the three y axes we use the second, third, and fourth
most important features, respectively. These scatter plots are
useful for getting a better understanding of any correlations
or relationships between features. For example, looking at the
bottom three plots in the second column (cluster Beta) we can
immediately spot a linear relationship between the number
of open () operations and the number of files accessed, as
well as the number of processes. Gauge supports increasing
the numbers of SHAP features and scatter plots, as well as
using other types of plots such as correlation matrices showing
feature correlations, but these are not shown because of space
constraints.

Note that Gauge is an interactive tool. The user is expected
to explore different clustering granularities (perhaps around
a certain job or application) and different cluster sizes, an-
alyze ML models at those granularities, compare local and
global patterns, and explore the (often nonlinear) relationship
between the features using the scatter plots. Next, we provide
a case study using Gauge to analyze jobs from ALCF’s Theta
supercomputer.

V. CASE STUDIES

The conventional approach to I/O performance analysis in
the context of user/facility interactions is to work collabora-
tively with individual users to address specific concerns or im-
prove the productivity of high-profile applications. This hands-
on focus has proven effective in numerous examples [|16[]—[18]]
but fails to capitalize on the potential of guidance derived from
broader contextual analysis:

e Does a given application conform to a contemporary 1/O
motif at this facility that is amenable to known optimiza-
tions?

e Would novel improvements to this application likely be
applicable to other production applications?

o Is this I/O motif widespread enough to warrant strategic
adjustments to provisioning or procurement?

o Beyond ad hoc user feedback, how can administrators
allocate limited support resources for maximum impact?

In this section we focus on four candidate clusters identified
using Gauge to illustrate how its capabilities could impact
production workloads observed on the Theta system. The
clusters are named Alpha to Delta and correspond to the
large nodes with the same names in Figure [3] and columns
in Figure [

A. Cluster Alpha

Cluster Alpha is notable because it goes against common
access pattern expectations in that it is dominated by jobs
that perform read/write access to almost all files. There are
few pure read-only or write-only files. Read/write access to a
single file could be caused by out-of-core computations, but
in this case we see a different cause. The two most common

codes in this cluster are an I/O benchmark application and a
data science/ML application.

I/O benchmarks generally measure performance as the
elapsed time needed to write a file (or files) and then the
subsequent elapsed time needed to read it back. Its prominent
presence in an unguided analysis of production I/O activity is
not directly relevant to scientific productivity, but it may help
a facility operator better understand the impact of performance
measurement on the system.

The second most common code in this cluster is a data
science/ML application, which is a relatively new type of
workload for HPC systems. Its presence and the fact that it has
a pointedly different access pattern from other clusters could
potentially help inform strategic provisioning or procurement
decisions that are more responsive to the mix of production
applications running at a facility, for example, by providing
more storage resources that are optimized for that particular
workload.

The SHAP analysis shows a correlation between perfor-
mance and the number of times that the job alternates between
read and write access. This is not an intuitive correlation at
first glance, but it may indirectly indicate applications that
benefit most from caching of recently accessed data, which
is also an indicator of potential procurement optimizations by
providing burst buffer resources to such applications. Other
correlations indicate positive associations with data volume
(which can amortize startup and metadata costs), read access
size, and sequential property of accesses.

The third scatter plot (first column, seventh row) indicates
that increased data volumes improve performance regardless
of how frequently applications switch between read and write
access patterns.

B. Cluster Beta

Cluster Beta is a notable case study because it does not
conform to conventional I/O tuning expectations in the SHAP
analysis. The most prominent correlations identified by Gauge
are positive correlations with the number of times that the
open () system call was invoked and the number of files
accessed: behaviors that are not intuitively associated with
improved throughput. The first scatter plot (second column,
fifth row) exhibits a diagonal pattern corresponding to jobs
for which each file was opened exactly once, but there are
also points below the diagonal that indicate jobs for which
individual files were opened multiple times. The third corre-
lation appears only in this cluster: a positive correlation with
unaligned memory accesses. The second scatter plot gives an
indication of why this may be misleading, however. It appears
that the jobs are either exclusively well aligned in memory
or heavily unaligned in memory, and all of the larger jobs
(and thus higher-performing jobs) fall into the latter category,
producing a misleading correlation with memory alignment.
Memory alignment is indeed a performance factor, but it
usually is not prominent on an HPC system because of the
proportionally larger impact of file alignment due to secondary
storage latency. However, this cluster is a good example of



why this exploratory analysis should be interactive. At a finer
granularity, these unaligned and well-aligned jobs may be
split into two distinct clusters, with more interpretable models
trained on each of them.

This cluster includes data science/ML, chemistry, and ther-
modynamics applications, as well as I/O benchmarks. Further
analysis is required to ascertain why this cluster does not
conform to expectations for I/O performance correlations. One
possibility is that it accessed a different storage system (for
example, possibly relying to a large degree on small local
solid-state storage devices present on each node of Theta), a
factor that is not captured by Gauge analysis. A substantially
different storage system, particularly one that does not provide
a shared namespace that can cause contention, is likely to have
significantly different performance properties. The unusual
clustering in this case may be an indicator of emerging
performance phenomena warranting attention that may not be
apparent from anecdotal user interactions.

C. Cluster Delta

Before we analyze cluster Gamma, we first look at its
sub-cluster, cluster Delta. Delta includes 11,961 jobs. It is a
notable cluster because all samples within it were produced
by just three applications. Those three applications belong
to the same scientific domain: climate modeling. It is not
surprising that distinct applications in a given science domain
may share similar datasets, data formats, and data access
methods, but such a grouping might not be readily evident
to a facility operator. Even if the grouping were evident at
an administrative level, there is no guarantee that applications
in a given domain will be so closely related. This cluster is
an example of how Gauge can be used to identify related
applications that may benefit from a common optimization.

The applications in this cluster are characterized by the
majority of files being either pure read-only or pure write-
only (mixed read/write workloads to the same file are rare).
The overall read/write ratio varies considerably from job to
job, but more jobs are read-heavy than write-heavy overall.

The SHAP analysis of correlations between metrics and
performance indicates factors that mostly conform to conven-
tional I/O tuning wisdom. Jobs that read data in relatively
large chunks (1 MiB to 4 MiB, i.e., multiples of the parallel
file system block size) have a positive correlation with per-
formance, while jobs that access data in small chunks (100
bytes to 1 KiB) are negatively correlated with performance.
This relationship is confirmed for read accesses in all three
scatter plots, which report higher performance intensity as the
number of read operations in the 1-4 MiB range increases but
are less sensitive to changes in the number of writes in the
100-1000 KiB range, reads in the 1-10 KiB range, and reads
in the 100-1000 KiB range.

D. Cluster Gamma

Cluster Gamma is notable as a contrast to cluster Delta.
By composition, it includes the same three climate simulation
codes but adds a fourth additional climate simulation code
as well as a plasma simulation (i.e., an application from an

unrelated scientific field). This is notable for two reasons.
First, it illustrates the potential for common optimization
strategies to cross scientific domain boundaries if applications
(either by coincidence or by design) share similar properties.
Second, despite the intersection of application composition
from cluster Delta, the SHAP analysis illustrates a distinct
performance correlation that was not present in the latter
cluster. This suggests that potential optimizations are not
necessarily applicable to all instances of an application but
rather to particular configurations of an application that may
place it in different workload clusters.

The SHAP analysis for cluster Gamma shows that the dom-
inant correlation in this case is a negative correlation between
the percentage of unaligned (in file) accesses and application
performance. This factor is known to hinder performance
in some use cases [19]], particularly when accessing shared
files, and is most often addressed by refactoring I/O access
loops in the application code or by applying high-level library
optimizations to restructure access patterns before they reach
the file system.

The distinction in which factor is most critical to perfor-
mance in clusters Delta and Gamma is due to an underlying
factor that can be observed in the slope of the lines connecting
the last two axes in the top row’s parallel coordinates plot
(column 3, row 1). A downward slope (cluster Gamma)
indicates the presence of shared files (more processes than
there are files), which would be more sensitive to alignment
because of the potential for false sharing between adjacent
processes accessing a common file. An upward slope (cluster
Delta) indicates a file-per-process workload (more files than
there are processes), in which there is unlikely to be false
sharing between two processes in a file and instead the key
optimization at this scale is the ratio of productive work per
latency intensive operation (i.e., access size).

VI. RELATED WORK

The I/0 performance bottleneck in large-scale HPC systems
has been the subject of several studies. In [20] and [21],
the authors presented some of the earlier attempts to provide
a comprehensive description of I/O pattern characteristics
based on their evaluation of the performance of a file system
while running real application workloads. Other studies took
a monitoring software approach, including TAU [22], Paraver
[23]], SCALASCA [24]], Paradyn [25]], and Darshan [26]. These
software approaches generally consist of capturing I/O access
events from HPC application runs, which, when analyzed and
coupled with domain expert insight, could result in better
system characterization, more targeted resource allocation, and
ultimately improved application or system performance.

Because of the complexity of the parallel file systems and
the applications run on them, ML methods have been increas-
ingly adopted to extract insights and model I/O performance.
Supervised ML approaches involve learning a mapping that
can predict quantities of interest such as runtime or I/O
performance. Several works have adopted supervised ML for
predicting I/O performance. These include the work of Kim



et al. [27]], who modeled key characteristics of HPC systems,
such as bandwidth distribution, the ratio of request size to
performance, and idle time. Unfortunately, there is no evidence
showing these characteristics correlate to application behavior.
Dorier et al. [1]] proposed the Omnisc’IO approach, which
builds a grammar-based model of the I/O behavior and is then
used to predict when future I/O events will happen. Madireddy
et al. [3] proposed a sensitivity-based modeling approach
that leverages application and file system parameters to find
partitions in I/O performance data from benchmark application
jobs and builds Gaussian process regression models for each
partition to predict the I/O performance. In their follow-up
work [28], the authors adopted a neural-network-based ap-
proach to build global models to predict I/O performance while
considering the application and file-system parameters as
categorical variables. McKenna et al. [29] manually extracted
features from job logs and used several ML methods to predict
HPC job runtime and I/O behavior. Rodrigues et al. [30] used
features extracted from log files and batch scheduler logs and
presented an ML-based tool that integrates several methods to
predict resource allocation for HPC environments. Matsunaga
et al. [31] presented a Predicting Query Runtime Regression
(PQR?2) algorithm that was used on selected features from a
dataset generated by running bioinformatics applications to
predict execution time, memory, and disk requirements. In a
more recent study, Li et al. [4] presented PIPULS, a long
short-term memory neural network implementation coupled
with a hardware prototype used for online prediction of future
I/O patterns, for applications such as flash memory solid-state
drives scheduling and garbage collection. These approaches
are designed primarily for predicting the I/O performances
for specific scenarios but provide limited insights into the
similarities in I/O characteristics across applications and 1/O
bottlenecks.

Unsupervised ML approaches have been used as well to un-
cover features or patterns from a dataset, instead of predicting
I/O throughput. This approach was explored by [5] to discover
I/O behaviors, where k-means clustering was used to group
similar jobs, and identified nine access patterns representing
72% of the I/O behavior. Liu et al. [|32]] proposed AID (Auto-
matic I/O Diverter), a tool for automatic I/O characterization
and I/O scheduling. Deployed on the Titan supercomputer,
AID identified I/O-heavy applications and reduced their 1I/O
contention through better scheduling. Our approach uses a
combination of unsupervised and supervised techniques to
provide greater model stability and robustness.

VII. FUTURE WORK

Our future work will explore three directions:
Investigating external impacts on I/O performance: in this
work, we focus primarily on internal, job-specific impacts on
I/O throughput and have ignored external impacts (e.g., I/O
contention). To explore external impacts, we plan to integrate
logs from systems that measure I/O contention, as well as
include jobs smaller than 100 MiB in our analysis, which may
allow us to better estimate /O contention.

Improving model generalization and explanations: we
plan to explore how we can further preprocess Darshan logs,
as well as to investigate better models of I/O, both in order
to increase I/O throughput prediction accuracy and to arrive
at models that better encapsulate I/O behavior. With better
explainability, we hope to reduce the reliance on manual
analysis, allowing broader usage of Gauge.

Exploring sources of errors: there are four possible reasons
why our models make errors: either the system or distribution
of applications may have changed, I/O contention may affect
jobs, or our models require further tuning. We hope to arrive at
a better understanding of how much each of these components
contributes to prediction error.

VIII. CONCLUSION

Writing and tuning high-performing HPC applications re-
quires significant domain expertise, as well as a good under-
standing of the HPC system the application will be running
on. Often, developers and system owners find that despite
their best effort, their HPC jobs utilize only a fraction of the
promised I/O throughput. In this work, we tackled the problem
of modeling application I/O performance in order to extract
insight into why applications are behaving as they do, and
generalize this insight to larger groups of jobs. While domain
experts can analyze individual logs and give feedback on the
causes of poor I/O, such an approach is not scalable. In this
work we set out to build tools for automated, unsupervised
grouping of jobs with similar I/O behaviors, as well as
methods for analyzing these groups. We present Gauge: an
exploratory, interactive tool for clustering jobs into a hierarchy
and analyzing these groups of jobs at different granularities.
Gauge consists of two parts: a clustering hierarchy of HPC
jobs and a dashboard allowing a system owner or developer
to gain insight into these clusters. We build this hierarchy using
89,884 Darshan logs from the Argonne Leadership Computing
Facility (ALCF) Theta supercomputer, collected in the period
between 2017 and 2020. Using this tool and data, we ran a case
study from the perspective of a Theta’s system administrator,
showing how Gauge can detect families of applications and
spot strange I/O behavior that may require further fine-tuning
and optimization of these applications, hardware provisioning,
or further investigation. Gauge provides novel information
that leads to new insights, but it still requires guidance from
a domain expert. Future work lies in reducing this reliance
so that the techniques from Gauge can lead to more agile
improvements in the field.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran 6 experiments, and each of the experiments corresponds to a
figure in our paper: 1. some simple statistical plots that showed the
distribution of our data, 2. we ran permutation feature importance
experiments to analyze XGBoost models and how they attribute
importance, 3. we ran hierarchical clustering on our dataset and
have trained predictors on individual clusters as well as the whole
dataset, 4. we have ran hierarchical clustering visualizations, 5.
we have plotted distance matrices of points in our dataset, and 6.
we have a script that shows our tool (Gauge). Gauge runs a lot of
small plots, as well as training XGBoost models, and running SHAP
analysis on them (https://github.com/slundberg/shap).

ARTIFACT AVAILABILITY

Software Artifact Availability: All author-created software arti-
facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: https://anonymous.4open.science/r/1c9
— a3777-0133-4db8-bff8-deffeddcad95/
Artifact name: Code supporting the submission

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Applications and versions: Python3.6

Libraries and versions: cycler==0.10.0 Cython==0.29.16 dec-
orator==4.4.2 graphviz==0.13.2 hdbscan==0.8.26 joblib==0.14.1
kiwisolver==1.2.0 matplotlib==3.1.2 networkx==2.4 numpy==1.18.1
pandas==1.0.0  pydot==1.4.1  pyparsing==2.4.7  python-
dateutil==2.8.1 pytz==2019.3 scikit-learn==0.22.1 scipy==1.4.1
seaborn==0.10.0  shap==0.35.0  six==1.14.0  sklearn==0.0
tqdm==4.45.0 xgboost==1.0.2

Key algorithms: HDBSCAN, SHAP, gradient boosting machines

ARTIFACT EVALUATION

Verification and validation studies: For the several machine learn-
ing models we have trained, we have always used 70-30 ratio cross-
validation.

Accuracy and precision of timings: Our work does not perform
any timings.

Used manufactured solutions or spectral properties: /

Quantified the sensitivity of results to initial conditions and/or
parameters of the computational environment: Our experiments are
(for the most part) deterministic. We might have not hardcoded
seeds in all of the experiments, but the only place where results
could change is in the ML models, and all of the ML models we use
(XGBoost for the most part), are robust to initial conditions.

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. Mul-
tiple of our experiments use box plots to provide an estimate of
classifier error.
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