
Gauge: An Interactive Data-Driven Visualization
Tool for HPC Application I/O Performance Analysis

Eliakin del Rosario∗, Mikaela Currier∗, Mihailo Isakov∗, Sandeep Madireddy†,
Prasanna Balaprakash†, Philip Carns†, Robert B. Ross†, Kevin Harms†, Shane Snyder†, Michel A. Kinsy∗

∗ Adaptive and Secure Computing Systems (ASCS) Laboratory
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843

{mihailo,eliakin.drosario,mkinsy}@tamu.edu
† Argonne National Laboratory, Lemont, IL 60439

smadireddy@anl.gov, {pbalapra,carns,rross,ssnyder}@mcs.anl.gov, harms@alcf.anl.gov

Abstract—Understanding and alleviating I/O bottlenecks in
HPC system workloads is difficult due to the complex, multi-
layered nature of HPC I/O subsystems. Even with full visibility
into the jobs executed on the system, the lack of tooling makes
debugging I/O problems difficult. In this work, we introduce
Gauge, an interactive, data-driven, web-based visualization tool
for HPC I/O performance analysis.

Gauge aids in the process of visualizing and analyzing, in
an interactive fashion, large sets of HPC application execution
logs. It performs a number of functions met to significantly
reduce the cognitive load of navigating these sets - some worth
many years of HPC logs. For instance, as its first step in many
processing chains, it arranges unordered sets of collected HPC
logs into a hierarchy of clusters for later analysis. This clustering
step allows application developers to quickly navigate logs, find
how their jobs compare to those of their peers in terms of I/O
utilization, as well as how to improve their future runs. Similarly,
facility operators can use Gauge to ‘get a pulse’ on the workloads
running on their HPC systems, find clusters of under performing
applications, and diagnose the reason for poor I/O throughput.
In this work, we describe how Gauge arrives at the HPC jobs
clustering, how it presents data about the jobs, and how it can
be used to further narrow down and understand behavior of sets
of jobs. We also provide a case study on using Gauge from the
perspective of a facility operator.

Index Terms—High-Performance Computing, I/O Analysis,
Visualization, Clustering, Machine Learning.

I. INTRODUCTION

High-performance computing (HPC) HPC systems are built

to accelerate scientific or business workloads. Not all types

of programs are easy to accelerate, however. In this work,

we focus on I/O-bounded programs that struggle to make

good use of the available I/O bandwidth. Since a modern

HPC I/O subsystem is multilayered and orders of magnitude

more complex than that of single-node machines, debugging

I/O problems is difficult. Several tools such as Darshan [1]

and Ellexus Mistral [2] were created to provide visibility into

this problem. While these tools can help record I/O utilization

issues, HPC system users still need tools that can help detect

and diagnose when jobs are underperforming because of poor

I/O usage.

Darshan is a lightweight HPC I/O characterization tool that

instruments HPC jobs and collects their I/O access patterns.

The logs Darshan collects are the main window an expert has

into the workloads running on HPC systems. In our study,

we analyzed 89,844 Darshan logs collected from the Argonne

Leadership Computing Facility (ALCF) Theta supercomputer,

in the period from May 2017 to March 2020 [3].

While Darshan offers a number of utilities for visualizing

logs and exporting a record of an HPC job, these tools work

on a per-log basis. To work with bulk logs, users have to

manually aggregate Darshan outputs, write scripts, or, in the

best-case scenario, rely on the facility to provide, for example,

a year of logs in a CSV format. Even for simple tasks such as

counting the number of times a certain application has been

run or the total I/O volume transferred by a set of jobs, users

have to create ad hoc scripts. Even with support for easy data

manipulation, diagnosing I/O problems while working on large

tabular datasets is not trivial. Although experts can provide

insight for a specific job, this approach is not scalable when

attempting to apply analysis on a large set of similar jobs or

when simply exploring a dataset searching for possible issues.

In this work we present Gauge: a tool that can allow I/O

experts and facility operators to better scale their efforts and,

instead of analyzing single logs, apply their insight on clusters

of very similar HPC jobs.

Gauge is a web-based, data-driven, highly interactive explo-

ration and visualization tool meant for diagnosing HPC I/O

behaviors and problems. The goals of Gauge are as follows:

• Facilitating easy exploration and navigation in the high-

dimensional space of Darshan logs

• Clustering similar jobs in order to reuse expert analysis

and scale expert effort better

• Providing actionable reports for discovered I/O issues

Gauge has two target audiences: facility operators may

use Gauge to deal with system-wide problems and work to

increase the overall performance of the HPC cluster, and sci-

entists and application developers may use Gauge to improve

their jobs and diagnose the sources of low I/O throughput.

In the following sections we explain how Gauge clusters and

presents HPC jobs in a navigable hierarchy; we discuss how

users can use Gauge to understand the I/O behaviors of clusters

of jobs; and we present a case study on using Gauge from

the perspective of a facility operator. We invite the reader

15

2020 IEEE/ACM Fifth International Parallel Data Systems Workshop (PDSW)

978-0-7381-2361-5/20/$31.00 ©2020 IEEE
DOI 10.1109/PDSW51947.2020.00008

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:38:25 UTC from IEEE Xplore. Restrictions apply.

to evaluate Gauge at ascslab.org/research/gauge, where we

expose an instance of Gauge with which the user can explore

anonymized Theta logs. Additionally, Gauge is open-source

and available in the reproducibility appendix [4].

II. CLUSTERING METHODOLOGY

The goal of this section is to show that (1) analyzing clusters

instead of individual jobs allows us to better utilize expert

insight without sacrificing analysis accuracy, (2) there exists

a “natural,” intuitive way to cluster HPC jobs, and (3) there

exist methods that can objectively show that one clustering

method is superior to another on our problem domain.

A. Preliminaries

In this work we cluster and visualize 89,844 Darshan logs

that have an I/O volume larger than 100 MiB. These logs

were collected at the Argonne Leadership Computing Facility

(ALCF) Theta supercomputer in the period between May 2017

and March 2020. Darshan [5] is an HPC I/O characterization

tool that collects I/O access pattern of jobs running on a sys-

tem. While it supports multiple different APIs such as POSIX,

MPI-IO, and STDIO, in this work we focus on POSIX.

Darshan instruments a job and collects hundreds of aggre-

gate values such as runtime, number of processes, read/write

accesses, bytes read or written to shared or unique files, I/O

access patterns per each file, and timestamps of first file open

and close operations. Our preprocessing pipeline removes a

significant number of unimportant or redundant features, It

summarizes each job using 53 features: 14 absolute-values

features such as runtime, I/O throughput, total data volume,

total number of files, bytes, and accesses, as well as 39 relative

(percentage) features such as read-to-write ratio, percentage of

accesses of certain sizes, and consecutive accesses. The feature

engineering used in this work is explained in more detail in [3].

B. Clustering HPC jobs

All of the HPC system logs used in this work can be treated

as unlabeled data. Until experts provide labels or categorize

each log, we cannot attempt to map new logs to existing

categories or mark a log as, for example, “high performance”

or “inefficient.” Cluster analysis methods attempt to separate a

set of data points into a number of groups so that data points

within a group share some underlying property or behavior.

Clustering data points such as individual HPC jobs into groups

of similar samples works under the assumption that there exists

some underlying structure to be unraveled. To evaluate this

assumption, we apply principal component analysis (PCA)

to our HPC log dataset. Here, the 53-dimensional space of

Darshan features is (linearly) compressed down into just two

dimensions, with these two dimensions explaining 61.4% of

the data variance. In Figure 1 we show a 2-dimensional

histogram of the PCA space with two components, with job

density shown on a logarithmic axis. Although the whole

dataset is globular in two dimensions and does not have any

visible structure to it (left), zooming into a dense region

reveals the existence of many small clusters of jobs (dark

−5 0 5
1st PCA component

−4

−2

0

2

4

6

2n
d

PC
A

 c
om

po
ne

nt

−1.0 −0.5 0.0 0.5 1.0
1st PCA component

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

100

101

Jo
b

de
ns

it y

Fig. 1. Two-dimensional PCA projection of the collected Darshan logs.

red spots in the zoomed-in figure on the right). Evidently,

even in this highly compressed space, significant structure

exists. We expect that adding more dimensions will reveal

further separation within the dataset. However, plotting high-

dimensional spaces is difficult, so we will rely on clustering

to reveal structure.

C. Choice of clustering method

Choosing an appropriate clustering algorithm is challenging

because we do not have a clear method to evaluate which

clustering (a “clustering” being a single mapping of samples

to clusters) is better, other than relying on expert intuition.

However, we can apply the following criteria: (1) our cluster-

ing method should be relatively insensitive to its parameters —

i.e., not require expert tuning, and (2) it should be insensitive

to noise and random initialization of seeds. Therefore, we first

seek a method to compare two clusterings in terms of their

similarity.

Several information-theoretic methods [6], [7] have been

proposed to compare two clusterings. In this work we use

variation of information (VI) [6] since it solves many of

the issues previous clustering metrics had. If a clustering

carries some information about the sample-cluster mapping,

VI measures how much information is gained and how much

is lost by switching from one clustering to another. Low

VI values imply that two clusterings are very similar, since

the information contained in the two clusterings has a large

overlap. Large VI values imply that the clusterings carry very

different information (e.g., by both being random sample-

cluster mappings) or that one clustering contains significantly

more information than another. We use VI to evaluate how

consistent different methods are in terms of their parameters /

seeds and whether different methods arrive at similar cluster-

ings. We evaluated four clustering algorithms: k-Means, mean-

shift clustering (MSC) [8], expectation maximization using

Gaussian mixture models (EMGMM), and DBSCAN [9]. Our

experiments show that only DBSCAN consistently arrives

at similar clusterings for both different parameter configura-

tions and different random initializations (graphs omitted for

space reasons). DBSCAN is an agglomerative, density-based,

nonparametric clustering algorithm that works by iteratively

clustering together samples that are within an ε distance of

each other. This imposes no structure on the shape or the

16

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:38:25 UTC from IEEE Xplore. Restrictions apply.

number of clusters, making DBSCAN an excellent tool for

clustering data from new applications.

D. Hierarchical clustering of HPC data

The size and number of DBSCAN clusters depend on the

choice of the epsilon (ε) parameter. Large ε values cause all

jobs to be clustered in a single cluster, while small value

cause all jobs to belong to individual clusters. Although we

can experiment with this value on our dataset, it presents two

problems: (1) when applying clustering to a new dataset (e.g.,

from a new supercomputer), we may need to tune this value

again, and (2) a single ε value does not reveal hierarchical

structure (e.g., which clusters will get combined together if

we were to increase ε).
To fix these problems, we opt to use HDBSCAN, a hierar-

chical version of DBSCAN that, instead of running DBSCAN

using a single ε value, can be seen as running a grid search

over all values and retaining information about which clusters

merge into which and at what ε values. HDBSCAN is useful

because instead of just providing a mapping between samples

and clusters, it creates a tree where branches are clusters

and leaves are individual jobs. For a deeper discussion of

HDBSCAN and HPC job clustering, see [3]. In Figure 2 we

provide an example hierarchical clustering of HPC jobs built

by using HDBSCAN.

We can interpret the tree in the figure as follows: each

circle in the graph represents a cluster of jobs, it’s radius

is proportional to the number of jobs in the cluster, and it’s

vertical position specifies the ε value at which HDBSCAN

creates / breaks up the cluster. The lower the nodes are in

the graph, the less jobs they have and the more dense they

are. As the ε parameter value used by DBSCAN is lowered,

each cluster eventually splits into two smaller clusters. This

is visualized with the parent and child clusters connected by

the branches. The top node of the tree represents a cluster that

contains all 89,844 jobs in our dataset. This top node splits

into two branches, meaning there exist broadly two classes

of jobs in the dataset. By using Gauge, we discover that

the main difference between the two branches are their I/O

patterns: the left branch contains jobs that have mostly large

write access sizes (in the 100 KiB+ range) and a balanced

amount of reads and writes, whereas the jobs in the right

branch use smaller write sizes and are write-heavy. Similar

analyses can be applied to other nodes in the tree. Another

way of interpreting the tree is by looking at the tree topology.

We observe that the tree consists of multiple branches that

have many small clusters “falling off” of them. Periodically,

these branches also split into two branches of similar sizes.

Tall branches represent clusters that are stable for a large

range of ε values. These clusters are dense, so they are

insensitive to changes in ε in that range. As we reduce ε,
small outlier clusters are separated from the more populous,

‘main’ branches, but the main clusters are largely unaffected

and maintain their size. However, if these clusters consist

of smaller, denser clusters, at a certain ε value these main

branches will bifurcate.

Fig. 2. Gauge clustering hierarchy built by using HDBSCAN. Each node is a
cluster of jobs. Each node connects a parent (higher) and child (lower) cluster,
where the parent contains all of the child’s jobs, plus some. Each cluster’s
height represents the ε value at which that cluster is split into smaller clusters.

III. HPC I/O PERFORMANCE ANALYSIS USING GAUGE

The goal of Gauge is to provide an interactive environment

where application developers and facility operators can (1)

quickly determine jobs of interest, (2) evaluate whether these

jobs are behaving as expected, (3) compare and contrast these

jobs with previous runs of the same application or similar

jobs, and (4) extract sensible information to better understand

why jobs are performing as they do, improve their future jobs,

and develop greater insight into the workloads running on the

system.

In a nutshell, Gauge is a web application that consumes

unorganized logs of HPC jobs and provides a hierarchical,

interactive visualization of the workloads that ran on the

system. Gauge aims to offer several levels of granularity at

which to view jobs from high-level clusters arranged in a tree

structure to condensed sets of graphs for each user-selected

cluster in the tree down to the fine-grained views of each

job and each logged feature in a cluster. In the next three

subsections, we describe each of these views.

A. Gauge Clustering Hierarchy

In Figure 2, we show Gauge’s hierarchical clustering.

Through interaction with the users, we built a number of

features that ease navigation in the tree. Hovering over a node

displays the cluster ε parameter and number of jobs, and for

further analysis the user can click the nodes to reveal key

details about the cluster. The nodes in the hierarchy can be

colored by the size of each cluster, the ε value of each cluster,

or by whether a cluster contains jobs from a specified user or

app. One of the more useful features is coloring by feature

value. Here, by averaging a user-specified feature’s values

over all of the jobs in the cluster, we determine the cluster’s

color. For example, by selecting to color clusters by their I/O

throughput, we can visually find high- and low-performing

jobs in terms of their I/O utilization.

17

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:38:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Gauge cluster visualization. Every time a cluster in the hierarchy is
selected, this type of column is created with the cluster’s data.

B. Gauge Per-Cluster Visualization

Selecting a cluster creates a column with details pertaining

to that cluster, for example, which users ran the jobs in the

cluster; which applications do these jobs belong to; what are

the runtimes, I/O volumes, or other features of these jobs; and

what are the common I/O access sizes that these jobs made. In

Figure 3 we show an example column that is displayed when

a user clicks on a cluster from Figure 2.

The column consists of five graphs. The first two graphs

(first row) are bar charts that show the distribution of users

that ran the jobs, and the applications that the jobs belong

to. If the number of users or applications exceeds 5, the

first 4 are shown, and the remainder are grouped in the final

“other” column. The coloring of these charts proves important

in graphs to follow.

The next two graphs (second and third row) show parallel

coordinate plots of different sets of features. Each broken line

represents one job, and its position on each of the axes (5

axes on the second row, 6 on third row) specifies that job’s

feature values for the axes’ feature. The two graphs differ in

the type of features they present. The graph in the second

row shows features with percentage values, for example, the

percentage of read accesses or write-only files. These values

are always bounded in the [0%, 100%] range, so the axes have

fixed ranges. The other graph (third row) presents absolute-

valued features such as a job’s I/O throughput, I/O volume,

runtime, or the number of files used by the job. Note that

despite these axes having different dimensions (e.g., MiB/s,

GiB, s), for clarity and readability we use a single unitless

axis shown on the left of the graph. Since each cluster will

have a different range for its jobs’ values, each column needs

to have a separate range plotted. Having multiple separate

ranges complicates comparison between the selected clusters,

so Gauge offers an option to use a unified range across all

the selected columns. This range is calculated by using the

smallest and largest values of any job in the selected cluster.

Another feature Gauge offers is the choice of how the lines

are colored. Right now, Gauge offers coloring jobs by their

user (where jobs from different users have different colored

lines), and similarly coloring by application.

The fifth graph (fourth row) shows the distribution of access

sizes, broken up by reads and writes and by common access

sizes. When collecting logs, instead of storing access sizes

of each individual R/W access, Darshan collects aggregate

metrics and reports the number of accesses for each “bin.”

We use the same bins to present the read and write accesses.

Note that this bar plot presents averages across the cluster and

may be unreliable for highly diverse clusters.

C. Gauge Cluster Parallel Coordinate Plots

Although these graphs offer information about 31 different

features of the cluster’s jobs, a user may want to analyze a

specific combination of features or may want to observe only

a subset of the jobs in the cluster. To allow such analyses,

Gauge also includes a full-page, highly customizable parallel

coordinates plot based on HiPlot [10] that can be called

for each cluster individually. With the ability to select any

combination of the 53 recorded features, the HiPlot package

allows users to visualize interactions between features that may

otherwise go unnoticed in the cluster columns described above.

By using HiPlot, Gauge lets the user quickly add or remove

selected jobs, color jobs based on any of the selected features,

or even change the type of axis used for each feature (the user

can choose between using a linear, logarithmic, percentage, or

categorical scale). The user’s selections are stored so that any

following HiPlot selection modals will automatically apply

those decisions. In Figure 4, we show an example HiPlot

parallel coordinates plot for a cluster.

D. Gauge Software Architecture

Gauge consists of a Python and Flask server and a React-

based front end. The back end parses a directory of Darshan

logs, runs these logs through a preprocessing pipeline that

18

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:38:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. HiPlot view of a cluster with two different applications: quantum chromodynamics (blue) and quantum materials (orange).

sanitizes the data and applies feature engineering, and clusters

the data using HDBSCAN. The back end and front end are

Dockerized to allow easy deployment on new machines and

new datasets. Since our only assumption about the dataset is

that it is stored in a directory and consists of Darshan log files,

one can easily run Gauge on other supercomputers or clusters

that are using Darshan for instrumenting HPC jobs.

The Gauge front end is built using React [11] and Ma-

terialUI and uses D3 [12] and HiPlot [10] for the graphs.

React is a front-end JavaScript library that, with the help of

React contexts, provides seamless data flow throughout the

application. The styling for the application was based primarily

around MaterialUI because of its professional components and

ease of use. We use the D3 graph plotting library because of

its maturity and vast feature set. We use HiPlot for full-page

parallel coordinate plots because of HiPlot’s unprecedented

interactivity and excellent user experience.

IV. CASE STUDY

As a case study, we present how a facility operator can

use Gauge to comb through the logs and highlight clusters of

interest. For this example, an ALCF I/O expert performed an

open-ended exploration of logs in search of jobs that do not

obey conventional wisdom in terms of I/O performance.

The I/O expert identified the cluster shown in Figure 3 as

exhibiting strange behavior. Here, the majority of jobs in the

cluster belong to a quantum chromodynamics and a quantum

materials application. Both applications perform primarily read

accesses and have relatively similar I/O volumes and number

of processes. Despite being similar, however, the runs of the

two applications differ by several orders in magnitude for both

runtime and I/O throughput. These differences are uncommon:

other clusters that Gauge identified (at the same DBSCAN ε
value) have less variance for those two features.

The I/O expert used the HiPlot feature of Gauge to gain

further insight into the cluster, shown in Figure 4. The expert

colored jobs by application and moved the I/O throughput

axis (POSIX RAW agg perf by slowest) all the way to the

left. Several conclusions can be made from the figure: (1)

applications transfer similar amounts of data (200 MiB – 2

GiB range), (2) the majority of orange jobs have 5 times larger

I/O throughput compared with blue jobs, (3) both applications

almost exclusively perform read accesses, and (4) the blue

application opens a larger number of files. We note, however,

that this last conclustion may not be important since jobs from

both applications use thousands of processes.

On a suspicion, the I/O expert then added

another column to HiPlot (the rightmost axis

POSIX RAW FILE ALIGNMENT). Here we can see

that jobs from different applications have different file

alignments (256 KiB vs. 1 MiB). Different file alignments

hint at the possibility that these applications might be using

files on different filesystems. Indeed, after further inspection

using Darshan summary plots, it became clear that the slower

application reads primarily files on the home filesystem,

while the faster application uses files on Lustre. Even though

the slower application obviously will benefit from moving

its files to Lustre, a scientist who develops an application

on a local machine can easily make such a mistake. Despite

being briefed on using the HPC system, it may be difficult

for the scientist to debug this issue without the manual

involvement of an I/O expert. Similarly, a facility may have

a hard time spotting such inefficacies in their workloads and

may underutilize the HPC system’s potential. Gauge offers

a more efficient method for helping developers accelerate

their workloads and for helping facility operators extract the

maximum out of the system. Furthermore, Gauge provides a

rapport that can be used by the facility operators to support

their insights, speeding up communication between developers

and administrators.

19

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:38:25 UTC from IEEE Xplore. Restrictions apply.

V. RELATED WORK

Several works have tackled automating performance anal-

ysis of HPC jobs. Paradyn [13] is a tool that measures the

performance of HPC applications by dynamically instrument-

ing the application. Similarly, Periscope [14] also searches

for performance problems. Unlike Paradyn, Periscope uses

two separate monitoring approaches. One of these monitoring

approaches is the Peridot monitor which focuses on OpenMP

and MPI performance data and the cache monitor that focuses

on the memory hierarchy. In addition, both of these tools offer

a lightweight visualization interface to quickly display tabular

metrics and graphs. Another HPC performance analysis tool is

VAMPIR [15]. VAMPIR takes a given application trace and

transforms it into a variety of graphical views such as state

diagrams, activity charts, statistics and other useful displays.

The limitation of these tools lays in that the performance

analysis is done on single application. In the case of Paradyn

and Periscope, the hypotheses used to search for performance

problems must be precisely defined because these tools will

only instrument the parts of the application that are relevant

to the defined performance problem.

Gauge, on the other hand, behaves more like a log analyzer

similar to Splunk [16] and the ELK stack [17]. Gauge serves

as an extension to these performance analysis tools where

it consumes the logs collected by characterization tools like

Darshan and transforms them into a hierarchical structure

of clusters in order to simplify the exploration of jobs and

diagnosing of I/O bottlenecks. Unlike Splunk and the ELK

stack, Gauge does not require the user to learn a complex

query language or log handling configuration. Instead, Gauge

simplifies how a user interacts with logs by purely interacting

with the provided graphs. A major difference between Gauge,

Splunk and the ELK stack is that Gauge provide users with

the ability to explore high-dimensional data graphically, a

feature that is not found in Splunk and to achieve this feature

with the ELK stack, an additional integration is required like

using Vega, a grammar based charting library to complement

Kibana.

VI. CONCLUSION

In this work we tackle the challenge associated with di-

agnosing I/O bottlenecks in HPC jobs. We introduce Gauge,

an interactive web-based tool for exploring logged HPC jobs,

clustering these jobs into an easy-to-navigate hierarchy, and

displaying information about clusters of similar jobs. We

present a stable hierarchical method for clustering HPC jobs,

the inner workings and decisions behind the design of Gauge.

We illustrate how Gauge can be used by both facility operators

and application developers to find I/O throughput issues. We

provide access to an instance of Gauge1 that was run on ALCF

Theta supercomputer logs.

In future work, we aim to (1) support not just Darshan’s

POSIX module but also MPI-IO and STDIO, (2) integrate I/O

throughput prediction models that may help detect outlier jobs,

1Available at ascslab.org/research/gauge

and (3) work with I/O experts to improve Gauge and apply it

to other HPC systems.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,

Office of Science, Advanced Scientific Computing Research,

under Contract DE-AC02-06CH11357. This research used

resources of the Argonne Leadership Computing Facility at

Argonne National Laboratory, which is supported by the Office

of Science of the U.S. Department of Energy under contract

DE-AC02-06CH11357.

REFERENCES

[1] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and improving computational science storage
access through continuous characterization,” ACM Trans. Storage, vol. 7,
no. 3, Oct. 2011.

[2] J. M. Kunkel, E. Betke, M. Bryson, P. Carns, R. Francis, W. Frings,
R. Laifer, and S. Mendez, “Tools for analyzing parallel i/o,” in Interna-
tional Conference on High Performance Computing. Springer, 2018,
pp. 49–70.

[3] M. Isakov, E. del Rosario, S. Madireddy, P. Balaprakash, P. Carns,
R. Ross, and M. Kinsy, “HPC I/O throughput bottleneck analysis with
explainable local models,” in SC’20: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2020.

[4] E. del Rosario, M. Currier, and M. Isakov, “Gauge: An Interactive
Data-Driven Visualization Tool for HPC Application I/O Performance
Analysis,” Sep. 2020. [Online]. Available: https://doi.org/10.5281/
zenodo.4027969

[5] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, and N. J.
Wright, “Modular HPC I/O Characterization with Darshan,” in 2016
5th Workshop on Extreme-Scale Programming Tools (ESPT), 2016, pp.
9–17.

[6] M. Meilă, “Comparing clusterings by the variation of information,”
in Learning Theory and Kernel Machines, B. Schölkopf and M. K.
Warmuth, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 173–187.

[7] E. B. Fowlkes and C. L. Mallows, “A method for comparing two
hierarchical clusterings,” Journal of the American Statistical Association,
vol. 78, no. 383, pp. 553–569, 1983.

[8] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, pp. 603–619, 2002.

[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based al-
gorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, ser. KDD’96. AAAI Press, 1996, p.
226–231.

[10] D. Haziza, J. Rapin, and G. Synnaeve, “Hiplot, interactive high-
dimensionality plots,” https://github.com/facebookresearch/hiplot, 2020.

[11] “React: Javascript library for building user interfaces,” https://reactjs.
org/, 2020, accessed: 2020-09-06.

[12] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven documents,”
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.

[13] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall, “The
paradyn parallel performance measurement tool,” Computer, vol. 28,
no. 11, pp. 37–46, 1995.

[14] M. Gerndt, K. Fürlinger, and E. Kereku, “Periscope: Advanced tech-
niques for performance analysis.” in PARCO, 2005, pp. 15–26.

[15] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach,
“Vampir: Visualization and analysis of mpi resources,” 1996.

[16] J. Stearley, S. Corwell, and K. Lord, “Bridging the gaps: Joining
information sources with splunk.” in SLAML, 2010.

[17] G. Smith, “Log analysis with the elk stack (elasticsearch, logstash and
kibana),” 2015.

20

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:38:25 UTC from IEEE Xplore. Restrictions apply.

VII. REPRODUCIBILITY APPENDIX

We open-source Gauge and provide access to an

anonymized dataset of HPC jobs ran on the Argonne Leader-

ship Computing Facility (ALCF) Theta supercomputer. The

code and the data are available at [4]. Both the front and

back end are containerized using Docker, and allow easy

deployment on new systems and on new datasets. Additionally,

we provide the code to reproduce Figure 1. For support or

feature requests, please contact the authors.

21

Authorized licensed use limited to: Texas A M University. Downloaded on February 07,2021 at 00:38:25 UTC from IEEE Xplore. Restrictions apply.

