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Abstract—Many modern HPC applications do not make good
use of the limited available 1/O bandwidth. Developing an
understanding of the I/O subsystem is a critical first step in
order to better utilize an HPC system. While expert insight
is indispensable, I/O experts are in rare supply. We seek to
automate this effort by developing and interpreting models of
I/O throughput. Such interpretations may be useful to both
application developers who can use them to improve their codes
and to facility operators who can use them to identify larger
problems in an HPC system.

The application of machine learning (ML) to HPC system
analysis has been shown to be a promising direction. However, the
direct application of ML methods to I/O throughput prediction
often leads to brittle models with low extrapolative power. In
this work, we set out to understand the reasons why common
methods underperform on this specific problem domain, and how
to build models that better generalize on unseen data. We show
that commonly used cross-validation testing yields sets that are
too similar, preventing us from detecting overfitting. We propose
a method for generating test sets that encourages training-test set
separation. Next we explore limits of I/0 throughput prediction
and show that we can estimate I/O contention noise by observing
repeated runs of an application. Then we show that by using our
new test sets, we can better discriminate different architectures
of ML models in terms of how well they generalize.

Index Terms—High-Performance Computing, I/O Analysis,
Machine Learning, Optimization.

I. INTRODUCTION

Many modern high-performance computing (HPC) applica-
tions are extremely data-intensive, moving terabytes of data for
tasks such as storing and retrieving data as a part of scientific
workflows [1] or storing checkpoints to protect the results from
possible hardware faults. These actions cause applications to
be I/O bound. The I/O subsystem of modern HPC systems
is complex, having multiple layers both on a physical (I/O
forwarding nodes, network nodes, storage nodes, etc.), and on
a logical (application data models, POSIX, etc.) level. This
makes debugging I/O problems difficult. Small mistakes in
HPC application implementation can reduce the I/O through-
put of an application by several orders of magnitude.

This situation motivates us to explore how we can gain
greater insight into the workings of I/O systems and into why
applications achieve the I/O throughputs they do. Although
HPC facilities have experts who can help developers optimize
their applications, this is still a time-consuming process. In this
work we build and use machine learning (ML) models of I/O

throughput in order to better understand I/O throughput and
interactions between the applications and the I/O subsystem.

Having an accurate model of an HPC system’s I/O capabil-
ities, as well as of the distribution of applications running on
the system, is valuable for multiple reasons. These models
may be useful in predicting a future job’s I/O throughput
and act as a sort of early-warning system for wasteful jobs.
Alternatively, based on an application and a set of input
parameters, an /O model may be able to tell in advance how
long the job will run. By knowing how an application interacts
with system resources and other applications, we may better
schedule that application. Such an I/O model may tell us if
an application is particularly vulnerable to I/O contention or
if it will disproportionately impact other jobs running on the
system [2].

In this work we focus on another use case: using ML
models to gain deeper insight into the system. In this scenario
possessing an accurate model of I/O behavior is a goal unto
itself. By treating a model as a black box, we can learn
how it responds to different stimuli and how to better use
the system. This analysis can be beneficial to system owners,
who may learn how to better provision and procure new
hardware, identify which applications are negatively impacting
co-located applications, or determine whether a known opti-
mization exists for a given application. Analyzing I/O models
can also be of interest to users who can gain insight into
why their application may not be performing as expected, find
bottlenecks in their code or in the system, and learn what
modifications will yield the largest impact.

In addition, we focus on enabling interpretation of ML mod-
els of HPC systems. ML model interpretation is a collection
of methods that produces human-interpretable explanations of
why a data-driven model has arrived at a certain output or
how different input parameters affect a model’s outcome. To
arrive at sensible interpretations, we seek models that exhibit
good extrapolative power, in other words, models that achieve
reliable results on unseen data. However, direct application
of ML interpretation methods to I/O throughput models does
not always yield sensible results. This work was driven by
empirical observations that while I/O models can have ex-
cellent predictive accuracy on a variety of applications, the
interpretations gained from these models are still significantly
less useful than the expertise and know-how of system owners
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and HPC practitioners. Therefore, we aim to understand the
source of this discrepancy in order to build more interpretable
models of I/O behavior.

To that end, our contributions are fourfold:

o We show that because of the typical distribution of user
jobs in an HPC system, models trained on those jobs
do not generalize well to unseen applications. This lack
of generalization typically goes unnoticed because of the
common methods for creating training and test splits.

« We propose a method for generating test sets that helps
diagnose the lack of generalization in ML models. The
method clusters the dataset using DBSCAN and holds out
a subset of clusters at random.

e We explore the limits of prediction, where by looking
at several runs of the same program with the same
input we establish the variance of I/O throughput. We
use this variance as the lowest possible prediction error
achievable, and we show that this “noise floor” highly
depends on the type of application.

o We perform a hyperparameter search in an effort to find
configurations that work well on this domain. We develop
and evaluate ML models that have an improvement in
generalization over the baseline.

II. RELATED WORK

Performance analysis and modeling of HPC applications
remain a pressing concern because HPC applications often do
not make good use of limited I/O resources. One key challenge
stems from the fact that the variability of HPC applications has
made the task of modeling and predicting their performance
a nontrivial undertaking. In fact, several works have tried
different strategies to predict or model the performance of
these applications. Yang et el. [3] propose an observation-
based performance prediction approach where partial execu-
tion of iterative programs is observed to predict performance
across two applications. While effective, this approach is
restricted to the system sizes used for the partial executions
such that their model becomes less accurate when reusing
partial execution results for a different problem. Madireddy
et al. [4] proposed a sensitivity-based modeling approach
that leverages application and file system parameters to find
partitions in I/O performance data from benchmark application
jobs and builds Gaussian process regression models for each
partition to predict the I/O performance. In their follow-
up work [5], the authors adopted a neural-network-based
approach to build global models to predict I/O performance
while considering the application and file-system parameters
as categorical variables. Armstrong et el. [6], [7] developed a
methodology that adopted the “Resource Usage Equations” to
characterize application performance by their evolution trends
based on system configurations and large dataset usage. Other
work such as [8] used a combination of both analytical and
experimental methods where the former method is used to
capture deterministic factors while the latter produces implicit
and dynamic factors.
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III. PRELIMINARIES

In this work we model I/O throughput using 89,844 Darshan
logs that have an I/O volume larger than 100 MiB. These
logs were collected at the Argonne Leadership Computing
Facility (ALCF) Theta supercomputer in the period between
April 2017 and May 2020. Darshan [9] is an HPC I/O
characterization tool that collects I/O access patterns of jobs
running on a system. While it supports multiple different APIs
such as POSIX, MPI-IO, and STDIO, in this work we focus
only on POSIX. Darshan instruments a job and collects aggre-
gate values such as runtime, number of processes, read/write
accesses, bytes read or written to shared or unique files, I/O
access patterns per each file, and timestamps of first file
open and close operations. We perform a significant amount
of feature engineering on the collected data to allow easier
ingestion by ML algorithms. Our pipeline summarizes each job
using 52 features: 13 absolute-values features such as runtime,
total data volume, total number of files, bytes, and accesses, as
well as 39 relative (percentage) features such as read-to-write
ratio, percentage of accesses of certain sizes, and consecutive
accesses. An additional feature is I/O throughput, which is
used as the prediction target and is not fed to the ML models.
In this work we train models that use the 52 input features
in order to predict the I/O throughput. In [10] we provide a
deeper discussion on feature engineering Darshan logs.

IV. DIAGNOSING LACK OF GENERALIZATION

Generalization is important, but it is not always achieved;
and without a correct methodology, the lack of generalization
may not be detected. To motivate this section, we give a
recent example we encountered when applying ML-based
prediction and model interpretation on new data from the
ALCF Theta system. When using our Gauge tool [11]—
an I/O throughput prediction and interpretation environment,
we observed degraded model accuracy when working on
very recent datasets (January 2020 and onward). Since the
models were trained only with data in the April 6th, 2017, to
January 1st, 2020, range, this degradation points to a lack of
generalization capability. However, the errors witnessed were
several times larger than the errors seen on our test sets. Since
the primary goal of test sets is to estimate real-world errors and
whether the model is overfitting, some salient dissimilarities
must exist between the test set distribution and real-world data.

We illustrate this problem with a simple experiment. In the
top row of Figure 1 we give an example of I/O throughput
prediction errors on the data collected in the period from
April 2017 to May 2020, with the ML model trained on
data collected before 2020. The blue line represents test set
errors where the test and training set belong to the same time
range. The orange line represents errors on data collected after
the model was already trained; in other words, this is “real-
world data” and should accurately represent how the model
behaves in production. Note that we display mean absolute
errors on the y axis, where we report the average absolute
ratio between the target and predicted value. For example, a
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Fig. 1: Mean absolute error (MAE) XGBoost I/O throughput
prediction errors as a function of time, averaged per week.
Blue lines represent errors on unseen (test) data from the same
time range the model was trained on; orange lines represent
errors on data collected after the model was already trained.
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2x value specifies that the model on average predicts an I/O
throughput either double or half of the real value.

One can observe that the jump in error coincides with the
end of the training set, since the ML model that made the
predictions was trained on data from April 2017 to January
Ist, 2020. What is surprising is that the model performed
well on test sets (blue line). The goal of the test set is to
inform us of how well we should expect the model to perform
in production, yet the random test set and the 2020+ test
set predictions have very different error distributions. These
results led us to conclude that these models are overfitting,
but the test sets were not able to detect this issue. In the rest
of the section, we examine the source of the disparity between
test set and real-world data.

When creating the test set used in the above example, we
used cross-validation, where we randomly split the dataset into
training, validation, and test subsets. We trained an XGBoost
regressor using the training set, optimized metaparameters
using the validation set, and evaluated the performance on
the test set. This is widely considered best practice: since the
model does not know the validation and test sets, it cannot
memorize them as it can with the training set; instead, it has
to develop deeper insight in order to successfully achieve good
accuracy. Nonetheless, once the model encountered newly
collected data, its accuracy was significantly degraded.

Following the I/O throughput formulation from [4], the
reason for this change in accuracy might be that (1) the HPC
system may have had a change in components, causing jobs
to achieve different I/O throughputs or (2) the nature of the
applications running on the system changed. We first set out
to evaluate whether any changes to the system are the reason
for this decreased performance. Without logs on the actual
hardware changes to the system, we rely only on Darshan
logs. Since these hardware changes can be treated as individual
events, we expect that after such an event, the accuracy of
the model drops. If a large system change happened around
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January 2020, that might explain the increase in error. To
evaluate this option, we repeated the experiment from the first
row of Figure 1 but used a different range for the training/test
cutoff. In the second and third rows of Figure 1, we show the
performance of a model trained on data from April 2017 to
January 2019 and January 2018, respectively. One notices that
for all three cutoffs at January 1, 2018, 2019, and 2020, the
test error jumps significantly as we cross the new year mark.
This leads us to the conclusion that there exist no specific
events in the system that drastically change the system’s
I/O profile and that the models are simply not generalizing
well. This conclusion was independently verified with ALCF
administrators. This behavior still leaves open the question of
why we have excellent performance on the random-generated
test set but not on newly collected data.

We hypothesize that this generalization gap between test set
performance and real-world performance does not truly exist
but that methodologies for creating test sets are inappropriate
for the data distribution we are working with. We propose
that we are unable to detect overfitting because of the highly
dense and clustered nature of our data [10]. When randomly
splitting the dataset into training and test sets, often jobs
with similar profiles or jobs from the same application would
get separated into the two sets. This separation allows our
model to simply memorize train-test pairs and achieve good
performance. When new data arrives, even though it may stem
from the same distribution (e.g., the same applications but run
with slightly different configurations), the model can no longer
rely on memorization and underperforms. However, because of
the combination of the random sampling we use to create the
test set and the dense nature of the dataset, this overfitting goes
unnoticed until the model is tested in the field. Additionally,
since we are unable to detect this behavior on the validation
set, our metaparameter optimization step does not improve
model accuracy.

To better illustrate this, we ran a simple experiment where
we randomly split a dataset into the training and test set with
an 80/20 ratio. We predict the I/O throughput of each job in
the test set by taking the I/O throughput of that job’s nearest
neighbor (NN) from the training set. In Figure 2a we show
a 2D histogram of these nearest-neighbor pairs of jobs, with
Manhattan distances between paired jobs on the = axis and I/O
throughput prediction errors on the y axis. The graphs above
and to the right of the 2D histogram present the histograms
of the marginal distributions of the same data. The cell color
represents the number of jobs that have that bin’s distance
and error value and are logarithmic, with an overwhelming
majority of jobs belonging to the red and orange areas. We can
draw three conclusions from this graph: (1) as the distances
between nearest neighbors grow, so do the prediction errors,
(2) almost all jobs in the test set have a nearest neighbor
in the training set that has a Manhattan distance less than
1, and (3) a significant number of jobs have “twin” jobs—
jobs that have a distance of 0; in other words, these pairs of
jobs have identical Darshan input features. We call these pairs
“duplicates,” since all of these pairs have identical executables
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Fig. 2: Test set jobs’ distance to their nearest neighbor in the training set vs. difference in their I/O thoughputs.

and represent multiple runs of the same programs, although
possibly on different data of the same size and format. Further
investigation shows that a large portion of these duplicates are
HPC benchmarking jobs.

We conclude that the distance between nearest-neighbor
pairs (with one element drawn from the training and an-
other from the test set) is very small. Using Manhattan
distances on our 52-dimensional Darshan feature space, the
average distance between any two jobs is ~22, while the
average distance between nearest-neighbor pairs is only 0.12.
Hence, using a k-nearest-neighbor (KNN) model to predict I/O
throughput should provide good results, even though KNN is a
nonparametric model and does not generalize at all. Therefore,
if we want to test generalization, we need to increase the
minimum distance between training and test sets.

V. ROBUST TEST SET GENERATION

We seek methods for generating test sets that will reveal
overfitting and generalization. As discussed, the core issue
with randomly splitting the dataset into training and test
sets is that the minimum distance between the two sets is
very small. Even if a model is overfitting, that is, simply
memorizing input-output pairs, because of the training-test
distribution similarity, models can have excellent performance
on the test set. However, as soon as they are evaluated on new
applications or even just new application configurations, they
underperform.

We present two methods for separating datasets into training
and test sets. The first approach is a per-application method,
where we select all jobs of a given application and hold them
out of the training set. The second method is a DBSCAN-
based method, where we cluster jobs at a certain € value and
hold out a single or multiple clusters at random from the test
set. We hypothesize that these methods will better estimate
robustness to new applications and application configurations.

A. Per-application test set generation

In the first method, we test the generalization of our
models by evaluating them on a completely novel application.
Since different applications have very different I/O profiles, a
single application does not suffice to properly measure model

44

generalization. This can be seen in Figures 2b and 2c. Here the
climate application test set often has very small distances to
the training set jobs, and using k-nearest-neighbor predictors
for I/0 throughput can yield good results. On the other hand,
the cosmology test set is clearly separated from the rest
of the dataset and has very large NN-based I/O throughput
prediction errors. Neither of the datasets would provide a good
picture of out-of-sample model errors. Therefore, when using
the per-application test set generation method, we have to
run a number of experiments, one for each of the selected
applications. In each run, one of the n most represented
applications is held out from the training set and evaluated
on, and the results are later aggregated.

B. DBSCAN-based test set generation

A crucial issue with using per-application test set genera-
tion is that held-out applications have very different average
distances to their nearest neighbors in the training set, so
our application-based error is highly sensitive to which and
how many applications we choose. Ideally, we would perform
a sweep over all applications, holding out every application
exactly once, but that is not practical since we have more
than 600 different applications recorded in our Darshan logs.
Another issue is that many of the applications on average
have a very small distance to the training set (e.g., the
climate application from Figure 2b). This approach again runs
into the same issue as with the randomly sampled test set.
Therefore, we seek a method that can guarantee training-
test set separation, in other word, that the minimum distance
between any training-test pair of jobs is greater than some
value e. We propose to use DBSCAN clustering for test
set generation. DBSCAN is an agglomerative density-based
nonparametric clustering algorithm that has been shown to
perform well for clustering HPC jobs [10]. DBSCAN works
by iteratively clustering together jobs that are within e distance
of each other, where ¢ is a user-specified parameter. With each
iteration, jobs may form clusters, existing clusters may have
new jobs appended to them, and clusters that are closer than
€ get merged into a single cluster. This process is repeated
until no change to the clustering happens during an iteration.
Therefore, when DBSCAN converges on a clustering, we
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Fig. 3: Distribution of I/O throughput prediction errors on
training and test sets generated by different methods.

know that the distance between any pair of clusters is greater
than ¢; otherwise clusters or jobs closer than that would have
been combined together. DBSCAN is useful since it does not
impose a structure on the clustering (unlike in, e.g., k-Means,
where clusters are roughly spherical), and it also does not
enforce a fixed number of clusters. For example, for large ¢
values the whole dataset may get merged in a single cluster,
while for small values each job may exist in its own cluster.
In Figure 2d we show distances and errors of a nearest-
neighbor I/O throughput prediction, where a test set consists
of randomly selected DBSCAN clusters for e = 1. As we can
see, there exists a cutoff on the x axis at the 1-unit mark, with
the majority of the data past the distance of 1.

C. Evaluating models on the new test sets

Now that we have test sets that may better diagnose when
a model is overfitting, we test how more complex ML models
perform on them. In Figure 3, we show the performance of an
XGBoost regression model on different test sets. First, note
that for the randomly sampled training/test split, the training
and test error distributions are almost identical. This is not
the case on any of the other datasets, where test set errors are
considerably greater than training errors. This is not a negative
result. Instead, this underperformance has existed before but
went undetected. Now that we have a method to measure the
lack of generalization, we can put effort into finding models
that are more applicable to the target domain.

D. Test set stability

Another issue with holding out applications or clusters is
stability. Our experiments show that predictor performance
varies significantly cluster to cluster and that certain groups of
jobs are harder to model than others. Hence, we can get very
different errors simply by, for example, tuning the random
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seed. To fix this problem, we use K-fold cross-validation.
When this method is applied to the DBSCAN-based test
sets, we split the clusters at random into n groups with
approximately the same numbers of jobs. Next, we train the
predictor n times, each time holding out one of the groups of
clusters and training on the rest. This approach guarantees
that every cluster and every job belong to some test set
once and only once. This modification increases the compute
requirements n times but is necessary for reproducibility. With
stable measurements of model performance, we run a sweep
over the e value and evaluate performance of models on the
DBSCAN-based test set. In Figure 4 (top) we show DBSCAN-
based test set errors for a range of e values, as well as
histograms of cluster sizes at different € values.

On the top left part of the figure, € values are small enough
that DBSCAN will cluster each point by itself. Doing so will
cause our DBSCAN-based method to behave identically to a
randomly sampled test set generation method, hence the flat
curve. On the top right, as we increase e, the test set contains
progressively larger and larger clusters. For large enough
€ values, we expect that the majority of the conventional
applications get clustered in a single cluster.

That leaves us with the choice of which e value to use in
the test sets. There is no right answer here, since we do not
know what to expect from future jobs. With larger € values,
we will optimize for models that generalize better but possibly
perform less than ideal on easy-to-predict jobs. With smaller
values, we may arrive at excellent performance on “dense”
areas of the space—areas where we have a lot of data, but our
models may underperform on novel applications. One option
is to select a value so that jobs from a single configuration of
a given application get clustered together but that jobs from
different configurations end up in different clusters. Using our
HPC 1/O performance analysis tool Gauge [11] (available at
ascslab.org/research/gauge), we can see that for e values in
the [0.5,1] range, clusters typically consist of jobs from a
single application, with smooth transitions between the jobs.
Therefore, we select ¢ = 0.5 as the value we will use in future
experiments. We plan to explore more judicious mechanisms
for selecting these values and the trade-offs we make.

VI. LIMITS OF I/O THROUGHPUT PREDICTION

Evaluating an I/O throughput prediction method is difficult
without a baseline to compare against. While the field of
HPC modeling has explored several approaches for throughput
prediction on various datasets and with different goals [4],
[5], [12], there does not exist a well-accepted benchmark
on which we can test models. In this section we describe
an alternative method of evaluating ML models. Instead of
comparing performance against weaker baselines, we try to
determine the lower bound of the error an I/O throughput
model can achieve. To that end, we explore sources of noise
that our logging infrastructure does not attempt to measure.

Other than the I/O profile of the job, I/O contention is
the single largest source of job performance variability [13].
To get insight into I/O contention, many works had to seek
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outside datasets [14] to estimate the state of a whole HPC
system at a given time [15]. While Darshan collects hundreds
of different features about the behavior of jobs, how they
access individual files, and optionally even the behavior of
individual ranks (e.g., through Darshan DXT), I/O utilization
logs are not currently being collected on Theta. To substitute
I/O contention logs, we initially attempted to estimate I/O
contention by reconstructing the state of the system using
the Darshan logs. Since Darshan profiles only 28% of all
the jobs running on Theta, however, we are unable to get a
clear picture of I/O subsystem utilization. Therefore, in further
text, we assume that we cannot learn I/O contention of the
system at a given moment and instead opt to model it as
noise. Doing so is problematic since machine learning models
are typically much more sensitive to noisy features they are
trying to predict than to noisy input features. While a noisy
input feature may deteriorate the prediction of that single job,
a noisy output feature can impact how the model is trained
and therefore deteriorate all predictions [16]. That is why we
first seek to gain greater intuition about I/O throughput noise,
while restricted only to Darshan logs.

A. Duplicate jobs as insight into I/O contention

Several classes of ML models have a property that they
can approximate any continuous real function down to some
arbitrary precision. While in theory this means that they can
achieve perfect accuracy on a training set, this applies only
to well-defined functions. In practice, the training dataset may
contain multiple datapoints that have the same input features
but different target features (e.g., two copies of the same
image but with different labels). Since the model has no
way to differentiate such datapoints, it cannot achieve 100%
accuracy on the training set. While such cases may complicate
development of ML models and hurt accuracy, we use these
examples to instead evaluate I/O noise.

Duplicate jobs are a key piece of data that allows us to
gain insight into I/O contention without actually having I/O
subsystem logs. We define duplicate jobs as jobs that have
identical Darshan profiles: they have opened the same numbers
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of files, transmitted the same amounts of data to and from
them, have had the same I/O motifs, and so on. They differ,
however, in features that are also a function of the system as
well of the job: I/O throughput, job runtime, file open and
close times, and so on. Note that we do not use these system-
sensitive features in our analysis because they are also used
by Darshan to estimate I/O throughput [10]. Hence, duplicate
jobs look completely the same to our models since the input
features are identical. Therefore, given a job, predicting the
average value of all of the job’s duplicates is guaranteed to
give the lowest error when evaluated on the training set. Note
that this situation does not hold on the test set, since a model
may exist that uses information about the distribution of other
sets of duplicates to make a better prediction.

We have already witnessed duplicate jobs. In Figure 2a, we
see that a large number of training-test pairs of jobs exist
that have a distance of O (vertical bar on the left). These
are duplicate jobs—to our models they are identical, and
when duplicate jobs get split over the training and test set,
memorization can give good results. Duplicate jobs occupy a
surprisingly large portion of our dataset: 21.6%.

We now analyze the I/O throughput noise of duplicate jobs.
In Figure 5, we see a scatter plot of I/O throughput and
1/O prediction errors for duplicates belonging to the top five
applications, in terms of how many duplicates each application
has. Each application’s jobs are colored in a different color.
Since ML models cannot distinguish duplicate jobs, we use
a simple mean value predictor that maps a given set of input
features to an average I/O throughput. Notice that most jobs
lie on diagonal lines of the same color. All jobs on a diagonal
are the same type of twin jobs (i.e., they have the same
input features); and as they vary in I/O throughput, those
differences are linearly reflected in I/O throughput prediction
errors, hence a straight line. On the right of the scatter plot we
have multiple histograms of I/O throughput prediction errors,
sorted by application. Obviously, some types of applications
(e.g., the compute-heavy benchmarks) are less sensitive to I/O
contention than are others (e.g., the I/O-heavy benchmarks).

B. Prediction errors on duplicate jobs vs. the whole dataset

The reason we are interested in duplicate jobs is that since
ML models cannot perform any better than by predicting the
average value (on training set data), we can estimate the lower
bound on I/O throughput prediction error for duplicate jobs.
While derived from duplicates, this bound should apply to
other jobs, too. A complicating factor is that this accuracy
bound depends on the job. Some jobs are easier to predict
than others, likely because they are less sensitive to I/O
contention. As an example, take I/O-heavy and compute-
heavy benchmarks in Figure 5, and notice the significantly
different distributions of prediction errors (blue and orange
marginal distributions on the right). We now ask the question
of whether we can similarly calculate the amount of noise
for the nonduplicate jobs. Since we essentially used nearest-
neighbor predictions for duplicate jobs (where the number
of neighbors is decided by the number of duplicates for
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each duplicate job), we use a k-nearest-neighbor predictor to
predict I/O throughput. As we are attempting to estimate I/O
throughput noise and not model generalization, we use the
original randomly sampled training/test set split. In Table I we
show the R? scores for both the predictions just on duplicate
jobs and on the whole dataset using KNN. Note that for k = 5,
predictions are almost as accurate as that of duplicates.

Type Duplicates k=1 k=2 k=5 k=10 k=20

R? 0.974 0966 0972  0.973 0.970 0.967

TABLE I: I/O throughput prediction R? scores on duplicate
jobs (mean estimates), and on the whole dataset (KNN).

This result is sensible since most jobs have neighbors within
an extremely small distance (90% of jobs have a neighbor
within a Manhattan distance of 0.2, Figure 2a). This allows
us to estimate that no model of I/O throughput can achieve an
R? score higher than 0.974 on our dataset.

VII. INCREASING PREDICTION ACCURACY ON
OUT-OF-SAMPLE HPC JOBS

As a reminder, the goal of this work was to improve our I/O
throughput modeling approach so that models would be more
robust to new applications and application configurations. With
the new test set we have built, and with insight into the upper
bound on model accuracy, we attempt to find ML models
of I/O throughput that generalize well. An additional goal of
this section is to evaluate whether metaparameter optimization
works better on the new DBSCAN-based test set and whether
metaoptimizing on it yields more generalizable models.

For our tests, we select € = 0.5 as a good compromise be-
tween robustness and accuracy, since at that value the clusters
typically consist of multiple runs of the same application with
the same or a slightly varying configuration.

To evaluate the potential for increasing generalization
through metaparameter tuning, we train different XGBoost
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models with a variety of configurations. We perform a grid
search over 5 parameters for a total of 480 experiments: (1)
type of test set (DBSCAN or random), (2) number of XGBoost
trees, (3) depth of XGBoost trees, (4) XGBoost subsample
ratio, which sets the percentage of the (randomly shuffled)
dataset each new tree gets exposed to, and (5) XGBoost
column sample by tree ratio, which sets the percentage of
(randomly shuffled) features each new tree has access to.

We separate experiments into those evaluated on the DB-
SCAN and randomly sampled test sets. On the left of Figure 6,
we see the distribution of R? scores for each of the 240
experiments on the randomly sampled test set. The graphs
on the right show the heatmaps of best-achieved R? scores
for the specified configurations of parameters. Notice that
on the random test set, more model capacity (through either
more trees or more depth) means better accuracy. We also
see that models are not very sensitive to the sample ratio
parameters, judging by the small variance of the values in
the right heatmap. Overall, performing a metaparameter search
on this test set may not improve our models, since the R?
score distribution is very dense and does not respond to
metaparameter changes significantly.

In Figure 7, we repeat the same experiment but on the
DBSCAN-based test set. Here, the R? scores clearly are far
more sensitive to metaparameter changes, judging by the larger
R? variance compared with the previous experiment. We see
that here the models are more sensitive to the choice of tree
depth but are insensitive to the number of trees. These results
may point to the fact that when models are no longer en-
couraged to overfit, more capacity does not improve accuracy.
Interestingly, models are now very sensitive to the choice
of subsample and column sample by tree metaparameters.
A single configuration of metaparameters exists that gives
significantly better results than any other (also highlighted on
the histogram as the pink bar). This experiment gives evidence
to the conclusion that without the right test set generation
methodology, we cannot properly evaluate and compare mod-
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els and so cannot perform a metaparameter search.

We next evaluate how the new models found through a
hyperparameter search on the DBSCAN dataset perform in
the real world. We repeat the experiment from Figure 1 but
this time evaluate two models: one whose hyperparameters
were optimized on the randomly sampled test set (red) and
one on the DBSCAN-based test set (blue). In Figure 8 (left)
we show the errors of the two models both on test data from
periods that they were trained on (up to January 2020) and
on data collected after the models were trained. On the right,
we show the histogram of errors on the new data, where we
can see that the model metaoptimized on the DBSCAN test
set achieves a 12% lower mean error than does the test set
metaoptimized model. We expect that further finetuning and
more fine-grained metaparameter searches will reveal models
that achieve better results.

VIII. CONCLUSION

Models of I/O throughput in HPC systems can be used for
better scheduling of jobs, for finding the bottlenecks of HPC
jobs, and as a proxy for the system that we can analyze and
whose dynamics we can explore. However, a large problem
in using ML models is their brittleness when deployed in
the field. In this work we explore why ML models do not
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generalize to unseen data as we would expect and why we are
unable to detect such lack of generalization. We diagnose this
problem and attribute it to the nature of the dataset and the high
similarity between multiple runs of the same applications. We
develop new methods for generating test sets, allowing us to
more accurately measure generalization. Next, we explore the
limits of I/O throughput prediction; and by using duplicate jobs
(repeated runs of the same applications and with same input
configurations), we can estimate the I/O throughput noise. This
provides us with an estimate of the upper limit in accuracy
a model can achieve. Then, using the new test sets, we are
able to run metaparameter searches and arrive at models that
have greater extrapolative power than do models evaluated on
randomly sampled datasets.
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